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Conceptual Model

Target/dependent variable + explanatory/independent variables
[Is this a causal model?]

- Dependent variable choice depends on objective/research
guestion

- Explanatory variables originates from theoretical/conceptual
considerations.

» Model building example : Effectiveness of search analytics on
sales (work backwards)

Make a sale of
products from

Attract

Convince
customer to

visitor to stay
and consider
my products

website (e.g.
via google
adwords)

my website
(today or in
the future)




Conceptual Model Example:
Website visitors (Multiple steps)

First increase webpage traffic — Not enough if visitor
leave without purchasing today or in the future
(think in terms of customer lifetime value).

Intermediate step — make customer search and
direct them to useful products. Also, try to register
them so we can send them latter info and
promotions that could make a sale.

When shopper adds products to basket— Make a sale!




Conceptualization/theory: Targeting

ﬁ Each step may require a different tool. Which?

Does one method fit all customers? How should we target different
customers?

Which webpage layout should | present to different customers?

Which products are more likely to make a sale? On which type of
customers?




Examples

* Smart spam classifiers protect our email by learning from massive
amounts of spam data and user feedback;

* Advertising systems learn to match the right ads with the right
context;

* Fraud detection systems protect banks from malicious attackers;

 Anomaly event detection systems help experimental physicists to find
events that lead to new physics, store sales prediction;

* Web text classification;

e Customer behavior prediction;

* Ad click through rate prediction;
 Malware classification;

* Product categorization;

* Hazard risk prediction;




Planning step by step

2

Fix problems with the data (preprocess)
Get to know the data (explore)

Build models (estimation)

Assess models (validation)

} Business view

- Chapter 2

- Chapters 3 and 4




Model building and assessment

Tid Attrib1 Attrib2 Attrib3  Class Lea rning
1 Yes Large 125K No algorithm
2 No Medium 100K No
8 No Small 70K No
4 Yes Medium 120K No IndUCtion
5 No Large 95K Yes
6 No Medium 60K No
7 | Yes Large 220K No Learn
8 |No Small 85K Yes Model
9 |[No Medium | 75K No \
10 | No Small 90K Yes
Training Set /
Apply
Tid Attrib1 Attrib2 Attrib3  Class MOdeI
11 No Small 55K ?
12 | Yes Medium 80K ?
13 | Yes Large 110K |2 Deduction
14 | No Small 95K ?
15 | No Large 67K ?

Test Set
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Model types

Undirected data
mining or
unsupervised learning

Directed data mining

or supervised learning




Classical techniques for model building
(supervised learning/ directed data mining)

Table Lookup Models

Nalve Bayes + LDA

(Multiple) Linear Regression

(Multiple) Logistic Regression




John went to an auto-dealer to buy a second-

hand car and is not sure if the price is fair. How
can he make a decision?

A. Ask a friend
B. Search for the price of similar cars
C. Check the price of the car when new




Table lookup

Based on the idea of similarity.

Building a lookup table:

e Choose input variables and the output score.
e Non-categorical variables must be “discretized”.

* Train the model by looking at the output for given set of input variables.
E.g. Average second hand car prices per set of attributes. Average price is
the output.

Using the lookup table

e New observations are compared with the elements in the lookup table. A
label is assigned.

e The value score (output) is assigned.



Table Lookup example

Home. * How to score the risk rating for an
B individual with 30 years of age, not
owing a house (and no other
loans), earning 30,000 euros per
year and asking for a loan of
10,000 euros?

effort (loan to
Income Age income) Home owner

1<20,000 1<25 1<2,5 1Yes
2>20,000 2>25 2>2,5 2No

N N W R, NN WD WN DA N W W N~ W
P R R, NN NN P PP PP RPN NNN R
R N NN RPN P P R N NNRNPR PR
N N P NN PR R P NN P NNPRP R R
N NN N NN NN PR R P P P R R R

Lookup table Variable description




Choose

Partition

Table lookup

Choosing dimensions

e Dimensions should affect the target variable.

¢ Dimensions should not be correlated with each other (income and age?).

e Increase cell estimate accuracy. Avoid cells with few training examples (e.g.
[2,1,2,1]?).

* Trade-off number of dimensions vs. partitions (levels) of each dimension.

Partitioning dimensions
e Large (finer) partitions (levels) increase accuracy of the target while reducing the
accuracy of the estimate.

* Nominal dimensions are naturally discrete. Some could be aggregated together
(e.g. number of children: 0,1,+2).

* Metric dimensions can be discretized (e.g. income, age, etc). Choose equal sizes
(e.g. quantiles).



Table lookup

 Estimation [or Training]

* For numeric target variables: Choose average
(median) per class.

 For categorical target variables: Use a score
(proportion of each cell that possesses the
given class label).

« Spare and missing data

* If some cells do not have enough training
cases either (i) reduce the number of partitions
or (ii) reduce the number of dimensions.




Estimation/Training

Example: three factors with two levels each (1,2) and one categorical outcome with
three levels (A,B,C)

Training set Model
X1 X2 X3 Y X1 X2 X3 Predict?
1 1 1C 1 1 1C
1 1 2A 1 1 2A
1 1 2A 1 2 1B
1 1 2C 1 2 2C
1 2 1B 2 1 1A
1 2 2C 2 1 2A/C?
1 2 2A 2 2 1 Overall?
1 2 2C 2 2 2C
2 1 1B
2 1 1A
2 1 1A
2 1 1B
2 1 1A
2 1 2C
2 1 2A
2 2 2C
2 2 2C




How can | compare the profitability of multiple
customers in my store?

A. By how much they spend

B. By how frequently they buy

C. By the last time they bought something
D. By the type of products they buy




RFM - A
Table lookup

model




DIY — Analysis from transaction
data

File: rfm_transactions.sav

» How are the R/F/M scores constructed/distributed?
* How is the combined RFM score calculated? Importance?




SPSS — creating an RFM model

Get ChO3_rfm_transactions.sav and Ch03_customer_information.sav
from Moodle.

In a transaction data file, each row represents a separate transaction,
rather than a separate customer, and there can be multiple transaction
rows for each customer.




RFM model

The transaction dataset contains variables with the following
information:

* Anid (e.g. customer).
* The date of each transaction.

* The monetary value of each transaction.




RFM model

The transaction dataset contains variables with the following information:

* Anid (e.g. customer).
* The date of each transaction.
* The monetary value of each transaction.

MName Type
1 1D Mumeric
2 ProductLine  String
3 ProductMu_...  Mumeric
4 Date Date
] Amount Mumeric

Width
11
]
11
11
11

Decimals

[ B - B - B e IR

Label
Customer |D
Product Line
Product Number
Furchase Date

Purchase Amo._.



Direct Marketing > Choose Technique

ﬂ Direct Marketing ﬁ

Choose one of the following techniques:

Understand My Contacts

2] IS {
e @
2lalzl2
ARAD ?
&|1]1]1

Generate profiles of my
contacts who responded to
an offer

Help identify my best Segment my contacts into
contacts (RFM Analysis) clusters

Improve My Marketing Campaigns

|5mm

. !end [r—
- 2 BE
Al 2 ==

|dentify the top responding  Select contacts most likely

postal codes to purchase campaigns (Control

Package Test)

Score My Data

Apply scores from a model
file

Continue!|| Cancel |[ Heip |

Compare effectiveness of

Q RFM Analysis: Data Format

RFM model

e

My data are:

G Transaction data

™
EEER-L &

~ | Customer data

ok,
ookl

Each row contains data for one transaction. For the analysis, transactions
will be combined by customer identifiers.

Each row contains data for one customer The data have already been
combined by customer over transactions.

‘Continuel| [ cancel |[ Hep |

Q RFM Analysis from Transaction Data

e

idy
e

Variables:

&4 Product Line [ProductLine]
g@ Product Number [ProducthMumber]

Each row contains data for one transaction. For the
analysis, transactions will be combined by customer
identifiers.

Transaction Date:
| ﬁ Purchase Date [Date] |

Transaction Amount:
L |§ Purchase Amount [Amount] |
Summary Method:

Total ~ ]

Customer Identifiers:

|¢” customer D [ID]

|_ok ][ Paste |[ Reset |[cancet || Heip |




The new dataset contains only one row (record) for each
customer. The original transaction data has been aggregated by
values of the customer identifier variables. The identifier
variables are always included in the new dataset; otherwise you
would have no way of matching the RFM scores to the
customers.

The combined RFM score for each customer is simply the
concatenation of the three individual scores, computed as:
(recency x 100) + (frequency x 10) + monetary.

Note that 353 is not “larger” than 335.

The chart of bin counts displayed in the Viewer window shows
the number of customers in each RFM category.



RFM Bin Counts

Frequency

1 2 3 4

3

PEEEE)

e
L1111
e
(il
A

L1111
TTT]
T
LLI1]]

1T 2345 123 45 12 3435 12 3 425

Monetary

The chart of bin counts displays the bin distribution for the selected binning
method. Each bar represents the number of customers that will be assigned
each comhbined BFM score. Although you typically want a fairly even distribution,
with all {or most) bars of roughly the same height, a certain amount of variance
should be expected when using the default binning method that assigns tied
values to the same hin. Extremne fluctuations in bin distribution and/or many
empty hins may indicate thatyou should try anather binning method (fewer bins

dfar random assignment of ties) or reconsider the suitability of RFM

nalysis.

Number of customers in each
of the 5x5x5 (125) RFM
categories.

|deally, relatively even
distribution of customers
across RFM categories.

If there are many
empty/uneven categories
change the binning method:

- Use nested instead of
independent binning.

- Reduce the number of
possible score categories (bins).
- When there are large
numbers of tied values,
randomly assign cases with the
same scores to different

categories.



RFM Heat Map

Mean
Monetary
Value per

RF
Category

100000
W=00,00
M&00,00
D4o0,00
Ozo0,00
oo

4=

]
1 -]

T
1 2 3

Frequency

The heat map of mean monetary distribution shows the average monetary
value for categories defined by recency and frequency scores. Darker areas
indicate a higher average monetary value. In otherwaords, customers with
recency and frequency scores in the darker areas tend to spend moare on
average than those with recency and frequency scores inthe lighter areas.




Classification

Low frequency
Perhaps new
customers. What

strategy? l RFM Bin Counts

Frequency 555 - the best

1 customer?

............. umujll]lm
............. pupln RRRRR nlnin
ITTTINIINTE

1T 2 3 4 35 1 23 4 35 1 2 3 435

High frequency,

Monetary low recency.
Lost customers?




Data > Merge Files > Add Variables

Q Add Vanables from CA\Program Files\IBM\SPSS\Statistics\24\Samples\English\customer_information.sav

[t

Excluded Variables:

[« Match cases on key variables
[« Cases are sorted in order of key variables in both datasets

() Non-active dataset is keyed table
(@) Active datasetis keyed table
@ Both files provide cases

[] Indicate case source as variable: sourcen

(*)=Active dataset
(+}=C:\Program Files\BMiSP33\5tatistics\24vSamples\Englishicustomer_information.sav

| Ok ||Ea5te Reset Cancei| Help

Mew Active Dataset:

Diate_mauost_recent(®)
Transaction_count(®)
Amount(*)
Recency_score(®)
Frequency_score(®)
Manetary_score(®)
RFM_score(*)
Gender(+)
AgeCategory(+)

B lmme me 5%

rs

Kl

Key Variables:

ID




The final dataset ready for use

MName Type Width | Decimals Label Values

1 D MNumeric " 0 Customer 1D Mone I
Date_most___. Date " 0 Date of most re.. None I
Transactiun... MNumeric 7 0 Mumber of tran... MNone I
Amount MNumeric g 2 Amount Mone I
— Reaency s... MNumeric 3 0 Recency score  MNone I
III Frequency ... Numeric 3 0 Frequency score MNone I
Monetary_s._. Numeric 3 0 Monetary score  MNone I
_ RFM_score  MNumeric 3 0 RFM score Mone I
|I| Gender MNumeric 2 0 {0, Female}... |
AgeCategDry MNumeric 2 0 Age Category {1, =25}... I
MName String 10 0 MNone I
Address String 10 0 MNone I
City String 10 0 None |
State_F"rDm... String 10 0 State/Province  None I
FostalCode  String 10 0 Fostal Code MNone I
Country String 10 0 MNone I




John was so successful buying a car that he now
wants to use the expertise he gained into the car

market to predict the price of all cars in the
market.

A. That is easy he just needs to do Table lookup
with all the car prices and characteristics.

B. Difficult since there are too many cars.

C. That is impossible since cars vary in so many

different ways, it is impossible to get enough
cars to compare.



Table Lookup Models

Naive Bayes + LDA

(Multiple) Linear
Regression

(Multiple) Logistic
Regression




Nailve bayes

Table lookup quickly
become intractable
(curse of
dimensionality):

Example: 2 inputs with 10 levels is
100 cells, 3 inputs is 1,000 and 4
inputs is 10,000. A sample of
100,000 individuals gives an
average of 10 per cell!

v/

Naive Bayes works
around this.

How: Independence assumption.
Use prediction of each input on
target, independently from the
other inputs.

Example: 4 inputs with 10 levels
means 10+10+10+10 instead of
10*10*10*10.



Nailve bayes

Bayes Law

P(A|B)=P(B|A)*P(A)/P(B)

- This is useful because in many cases directly estimating one of
the (conditional) probabilities is easier than estimating the
other.

* The method is naive because it (naively) assumes that the
variables are independent from each other.




Nalve Bayes
Derivation

by Bayes' Theorem
”

Pr(Y|X1, ..., Xk) =

P(Y) * P(X1, ..., Xk|Y) by independence

P(X1, ..., Xk)

P(Y) * P(X1|Y) * P(X2|Y) * - P(Xk|Y)
P(X1,...,Xk)

* If one of the inputs is not know, say the kth, just drop it from the
equation.

 All elements in the numerator are very easy to obtain, the
denominator is more difficult. Fortunately, it is fixed so that it can be
treated as a constant.




Naive Bayes

In the binary case the odds ratio is:

Pr(Y = 1|X1, ..., Xk)
Pr(Y = 0|X1, ..., Xk)

_Pr(Y=1) Pr(X1|Y =1) Pr(Xk|Y = 1)
“Pr(Y =0) PriX1[Y =0)  Pr(Xk|Y = 0)

So Pr(X1,...,Xk) drops from the equation.
From the odds ratio we can recover the probability since:

_Pr(v=1|X) _ Pr(v=1|X) _ 41
Odds=——=————o0orPr(Y =1|X) =1 T

Pr(Y=0|X) 1-Pr(y=1|X)

Main disadvantage of Naive Bayes is the independence assumption.
It can be checked!



Example

Classify a Red, SUV, Domestic for getting stolen
Need to calculate the following probabilities:

Example

No Color Type Origin Stolen? .
T Sports  Domestic Yes P(Red|Yes), P(SUV|Yes), P(Domestic|Yes) ,
AREd Beis [DOREiE NG P(Red|No) , P(SUV|No), P(Domestic|No)

3Red Sports Domestic Yes
4Yellow Sports Domestic No

5Yellow Sports Imported Yes Results:
6Yelow SUV Imported No P(Red|Yes) =3/5=.06
7Yellow SUV Imported Yes

8Yellow SUV Domestic No P(Red|No) =2/5=0.4
P(SUV |Yes) = 1/5 = 0.2

9Red SUV Imported No
10 Red Sports Imported Yes
P(SUV [No) = 3/5=0.6

P(Domestic|Yes) = 2/5=0.4
P(Domestic|No) = 3/5 = 0.6
P(Yes) =5/10=0.5
_P(Yes|Red,SUV,Domestic) _ P(Yes)+P(Red|Y)*xP(SUV|Y)xP(Domestic|Y)
P(No|Red,SUV,Domestic) = P(No)+xP(Red|N)+xP(SUV|N)xP(Domestic|N)

_0.5%0.6%0.2+0.4
~ 0.5+%0.4%0.6+0.6

Odds

Answer: A Red domestic SUV is 3 times more likely not to get stolen
than to get stolen. Or it has a 25% probability of getting stolen.

0.333




DIY — Predictor Selection

Objective: To identify characteristics that are indicative of people who are
Iikeéy to ?(efault on loans. Use those characteristics to identify good and bad
credit risks.

Data: File chO3_bank_loan.sav.

> 850 past and prospective customers. First 700 cases are customers who were
previously given loans. Next 150 cases are “unclassified”.

> Split the 700 customers into training and test samples in order to create and
validate a model.

> For the remainin% 150 cases, since they have valid values for the predictors,
the procedure will generate model-predicted probabilities for these cases
when you save these values to the dataset.

* Note: Naive Bayes in SPSS can also be called as a FUNCTION available with in
the SPSS statistics server. Requires Syntax (i.e. non menu based) to run.
Command syntax for reproducing these analyses can be found
in ch03_bank _loan.sps.




x Naive bayes

Variables: 0 dent Variabl
ependent Varnabile:
Sort: Mone v & 4 + _&:’e ;
& Age in years Variables 0utput Save Optluns
ol Level of education Variable Specification Method:
& Years with current employer Specify variables to exclude v - - agug s
# Years at current address Predicted Value and Predicted Probabilities
) Variables to Exclude:
& Household income in thousands R .
& Debt to income ratio (x100) ¢ Predicted default, model 1 Save predicted value
& Credit card debt in thousands ¢ Predicted default, model 2 || )
4 Other debt in thousands & Predicted default, model 3 v Save predicted probabilities of categories
Candidate Factors:
N Number of categories:
¥ U4
Candidate Covariates:
-» T |
) Variables Output Save W
@ 4 foniiseissd
Forced Variables User-Missing Values for Categorical Variables Predictor Selection
Forced Factors: © Exclude © Select best subset from sequence of subsets
O Include [V] Automatically determine maximum subset size
Training Sample ecity ma
Forced Covariates: Olone Criterion for best subset:
M=l © Parcantage of cases to randomly assign to training 3am Test data ¥

O Select best subset of specified size

Percentage (%):
Tme limit: [ 5.0fg

Maximum memory for storing training data (MB): |1024
Number of bins for scale predictors: s

O Use all specified predictors

p— Lisbon Schaal

- FEConomics
&Manegement

Ve b e
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We can also start by randomly selecting 70% of the Select a training

valid sample. We will use the 30% for testing. But to 3 nd test sam p|e
guarantee replicability we must set the seed of the
random number generator.

- This gives you more control over the samples. R .
Target Variable Numeric Expression:
= rv.bernoulli(0.7)
Transform  |nset Format Analyze  Graphs
& Ageinyears[a.. ~|
= . il Level of educati.. i
. B Compute Variable... D e with o Function group
(8 & A G A0 -
PrUQfa I'T"Imablhty Traﬂ Sfﬂrmatiﬂﬂ. .. g g:;s‘g:?:l‘::‘: B % gDD:v;s?;J::cenha\ CDF
[ & Credit card debt___ Current Date/Time
) . & Date Arith
» [ Count Values within Cases... o) B s IS (an D prmte .
¥ & Predicted defaul .. Functi d S | Variables:
I Shift Values. .. & Predicted defaul... ‘:l E Delete anetions ane Specis TanenEs
- & Predicted defaul . -
. . & training
[ Recode into Same Variables .. & Valor predito [P
& Probabilidade P._
. . . & Probabilidade P...
(8] Recode into Different Variables & Grupo Previsto . v =
:
[ Automatic Recode. .
Yan _ B o | (oot | [Concal] [ 7op |
¢ lasl Create Dummy Variables
: &E Visual ﬂinning... [ @ Random Number Generators X
| ‘
Eé Optimal Binning |~ Active Generator Active Generator Initialization
Prepare Data for Modeling N [[] set Active Generator Set Starting Point
® ' O Random
={ B Rank Cases. .. O I @ Fixed Value
s B Date and Time Wizard... ‘ NE L] 9191972
E Create Time Series | Current Active Generator: SPSS 12 Compatible
pa
E‘E Replace Missing Values... ‘ The active generator setting applies immediately and to future

sessions.

. @ Random Number Generators...

Some procedures have internal random number generators. See
1 Lﬁ ' | the help for a complete list
| -

| Paste l | Reset | ICancell | Help I
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‘ - = ! of Econainics
i &Ma nit




// First set the random seed and select about 70% of the cases for model building

SET SEED 9191972, SyﬂtaX
IF (MISSING(default)=0) training = rv.bernoulli(.7) .

EXECUTE .

// Naivebayes command with selected variables (exclude preddefl preddef2 preddef3 training from predictors)
NAIVEBAYES default

J/EXCEPT VARIABLES=preddefl preddef2 preddef3 training

/TRAININGSAMPLE VARIABLE=training

/SAVE PREDVAL PREDPROB.

// Produce a means table and crosstabulation to look at the distributions of predictors by PredictedValue

MEANS
TABLES=employ address debtinc creddebt BY PredictedValue
/CELLS MEAN COUNT STDDEV .

CROSSTABS
/TABLES=ed BY PredictedValue
/FORMAT= AVALUE TABLES

/CELLS= COUNT ROW m

4»:3! #€AOUNT ROUND CELL .




Case Processing Summary

. NaiveBayes output

Freviously defaulted Mo 37a 7h,2%

Yes 124 24.8%
valid 499 100,0% Selected Predictors
Excluded 0 Pradictors
Total 4499 Categorical  ed

Scale address creddebt
debtinc employ

Subset Summary

Predictor Test Data Average Log-
Subsat Added Fank Criterion Likelihood
0 (Initial Subset)® Classification
. Fredicted
1 ;r‘srarresn;mth g 620 - 486 Percent
employer Sample  Ohbserved Mo Yes Correct
2 Debtto 5 403 425 Training Mo 352 23 93,9%
income ratio fes G4 G0 48,4%
(x100) ) '
Cwerall Percent 33,4% 16,6% a32,6%
3 Years at 3 488 - 407 Test No 133 g 93,7%
current
address fes 34 24 40,7%
4 Credit card 2 480 -,3849 Overall Percent 83,6% 16,4% T81%
debtin Dependent Variable: Previously defaulted
thousands
i Level of 1 ATE
education
G Cther dehtin 4 483 -, 380
7 Househald B 640 -,3480 e i ——
income in e ——  —
thousands - ' =

o

Age in years 7 578 - 407 m

“ a. The initial subsetis empty.




How the predictors affect the model-predicted
probability of response?

* Analyze > Compare Means > Means...

c@ Means

Dependent List:
¢ Ageinyearsiage] g & Years with current e...
,{I Level of education [... ‘ 2 ‘ & B e B
f Household income ... EL3
& Other debt in thous... ~Layer 1 of 1
% Previously defaulte...
& Predicted defautt, m... Prexious

& Predicted defautt, m...
& Predicted defautt, m...

& training &) PredictedValue [Predic...
& Predicted Probabilt...

& Predicted Probabilt... |+

Independent List:




How the predictors affect the model-predicted
probability of response?

Case Processing Summary

Cases
Included Excluded Total
[+l Percent [+l FPercent [+l Percent
Years with current 250 100,0% ] 0,0% 850 100,0%
employer * Predicted
Yalue
Years at current address a0 100,0% 1] 0,0% aa0 100,0%
*Predicted Value
Debtto income ratio 850 100,0% 0 0,0% 250 100,0%
(1007 *Predicted Value
Credit card debtin 250 100,0% 1] 0,0% aa0 100,0%
thousands * Predicted
Yalue
Report
‘ears with Years at Dehtto Credit card
current current income ratio debtin
Predicted Value employer address x100) thousands
1] Mean 938 8.a7 37620 1,3264
| 716 716 716 716
Stal. Deviation G 566 B A77 61473 1,56796
— — — — 1 Mean 422 516 17,7037 2591449
= o m—— — ] 134 134 134 134
e —— . — Stal. Deviation 6,236 5432 7,13338 368567
Tatal Mean 8a7 837 101716 16768
m [ 2850 2850 350 350
Stol. Deviation 6778 G885 671944 212584

Lisbon School
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How the predictors affect the model-predicted
probability of response?

* Analyze > Descriptive Statistics > Crosstabs...

{a
B Crosstabs (3 Crosstabs: Call Display x|
Row(s). ~Counts —— rz-test
f Age in years [age] ,{l Level of education [ed]
y Years with current empl... @ Ohserved [ Compare column proportions
y Vears at current addres.. [ Expected - Adjust p-values (Bonferroni method)
f Household income in tho... Column(s): [ Hide small counts
& Debt ta income ratio (x10.. & Predicted Value [Predict... Lessthen |5
f Credit card deht in thous... m Lab.)
& Other debtinthousands .. | ~Percentages -Residuals
&) Previously defaulted [def... | ~Layer 1 of 1 @ Row [F] Unstanderdized
& Predicted defautt, model ... , = i ,
& Predicted defautt, model ... Previous | hext ("] Column ("] standardized
f Predicted default, model ... [ Total [ Adjusted standardized
f training . :
& PredictedProbabilty_1 > [honinteger Weights
y PredictedProbabilty_2 @ Round cell counts Round case weights
Truncate cell counts © Truncate case weights
] Display clustered bar charts No adjustmerts
["] Suppress tables

m’ﬂ
Lisbon School
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Crosstabs

Case Processing Summary

Cases
Walid Missing Total
I Fercent I Fercent I FPercent
Level of education * 250 100,0% ] 0,0% 850 100,0%

Fredicted Walue

Level of education * Predicted Value Crosstabulation

FPredicted Walue

0 1 Total
Level of education  Did not complete high Count 4727 35 4R0
el % within Level of 91,7% 83%  100,0%
education
High school degree Count 143 42 235
% within Level of 82,1% 17,9% 100,0%
education
Some college Count 69 3z 101
% within Level of 68,3% 31 7% 100,0%
education
College degree Count 27 22 49
% within Level of 551% 44 9% 100,0%
= m— m—— Post-undergraduate Count 5 0 g
— — — — degrae -
e ———— % within Level of 100,0% 0,0% 100,0%
education
m Total Count T16 134 aan
% within Level of 84,2% 15,8% 100,0%

education

Lisbon School
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Discriminant Analysis

Let us return to the derivation with one explanatory variable (k=1) and impose a normal
conditional distribution (and assume equal co-variances for all K groups):

1
ey P0-0()
Pr(Y = k%) =P(Y—k) P(x|Y = k) _ 2o

p “Lx- o?
(x) Zlep(yzo*< 1 )e Ge-u(l))/

2O

Or the discriminant score becomes:

o 2
5, (x) = % +In(P(Y = k)

- This means that we can “estimate” the probabilities (the scores) by simply plugging the
mean and variance estimates.

- Each observation is then classified as one of k possibilities according the the highest
score.



ﬁ Discriminant Analysis

& Ageinyears [a... v
o Level of educati...

& Years with curr...

& Years at current....

& Household inco...

& Debt to income ..
& Other debt in th._.
& Predicted defaul...
& Predicted defaul...
& Predicted defaul ..
&> Valor predito [P...

=
& Probabilidade P... ¥

Grouping Variable:
default(0 1)

Define Range..

Independents:

| Credit card debt in thousands... |

O Enter independents together

@® Use stepwise method
Selection Variable:
training=1

[ Paste ] [ Reset | [Cancel] I Help l

Statistics
Method..
Classify

w III
X

Bootstrap. ..

Analyze Graphs  Utilities

Power Analysis

We use just one variable as
an illustration (p=1).

ﬁ Discriminant Analysis: Classification

O Compute from group sizes

Display
[[] Casewise results

[ Limit cases to first
Summary table

[] Leave-one-out classification

] Replace missing values with mean

Use Covariance Matrix
@® Within-groups
O Separate-groups

Plots

[] Cembined-groups
[] Separate-groups
[] Teritorial map

p— Lisbon Schaal

- FEConomics
&Manegement

Ve b e

‘2

Meta Analysis
Reports

Descriptive Statistics
Bayesian Statistics
Tables

Compare Means
General Linear Model

Generalized Linear Models

Mixed Models
Correlate
Regression
Loglinear

Neural Networks
Classify

Dimension Reduction
Scale
Nonparametric Tests
Forecasting

Survival

Multiple Response

B3 Missing Value Analysis...

Running analysis

ﬁ Discriminant Analysis: Save

Predicted group membership
Discriminant scores
[MlProbabilities of group membershig

Export model information to XML file

Extensions  Window  Help | ‘ ‘ Browse. .. ‘
>
> W[ Q
> [ o | |
>
>
>
>
>
>
>
>
>
>
>
> * . P . -
B TwoStep Cluster... Discriminant Analysis: Statistics X
> [ K-Means Cluster...
> [l Hierarchical Cluster.. Descriptives Matrices
>
23 Cluster Silhouettes . .
5 ;N X MM [v] Within-groups correlation
aive Bayes
> . . .
e [V Within-groups covariance

Separate-groups covariance
Total covariance

Box's M

M Discriminant...

Function Coefficients
Fishers
[] Unstandardized

I Cancel H Help ‘




Descriptives and assumptions

Analysis Case Processing Summary

Linweighted Cases M Percent
Walid 489 58.7
Excluded  Missing or out-of-range 150 17.6
group codes
At least one missing 0 .0
discriminating variable . .
- Different variances. We can actually
Both missing or out-of 1] .0
. . ’ .
LU UL test this selecting Box’s M in
least one missing
discriminating variable StatlstICS. Test Results
Linselected 20 236
Box's M 167.333
Total 351 413
F Approx. 166.924
Total as0 100.0
df1 1
Group Statistics df2 349307.254
Valid N (listwise) =1 e
oo ) A Tests null hypothesis of equal
Previously defaulted Mean Std. Deviation  Unweighted  Weighted population covariance
Mo Credit card debtin 1.2554 1.41768 375 375.000 matrices.
thousands
Yes Creditcard dehtin 23656 36732 124 124.000 c . Matri a
thousands ovariance atrices
Total Credit card debtin 15313 213087 4599 499.000 Credit card
thousands debtin
2reviously defaultad thousands
Mo Creditcard debtin 2010
thousands
Yes Creditcard dehtin 11.338
thousands
Total Creditcard dehtin 4541
thousands

a. The total covariance matrix has 498 degrees of
freedom.

Lisbon School
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Eigenvalues

Canonical
Function  Eigenvalue % ofVariance  Cumulative % Correlatio
1 054% 100.0 100.0 (.225

an School

COnoMmics
lanegerment

a. First 1 canonical discriminant functions were used in the analysis.

Wilks' Lambda

Wilks'

Test of Function(s) Lambda Chi-square df S

1 949 25 884 1 (<o01 )
v

Model fit



Classification Function Coefficients

Freviously defaulted

Mo Ves
Credit card debtin 291 hdg
thousands
(Constant) - 876 -1.341

Fisher's linear discriminant functions

Classification Puesultsa"t“'I

Predicted Group Membership

Results

Previously defaulted Mo Yes Total

Cases Selected Original  Count Mo 297 78 3i7a
Yes fili 48 124

% Mo 79.2 208 100.0

Yes 61.3 387 100.0

Cases Mot Selected  Qriginal  Count Mo 107 35 142
Yes 35 24 549

Lngrouped cases 1049 4 150

% Mo 75.4 246 100.0

Yes £9.3 40.7 100.0

o~ Lngrouped cases 27 27.3 100.0

C69.1% bf selected original grouped cases correctly classified.
\G5.2% of unselected original grouped cases correctly classified.

Lisbon School
of Eeanamics
&Manegement

6h




Given the rejection of equal covariances, rerun the analysis without this Re run
assumption. Note that when there are many variables this implies estimating a

lot more parameters (p*(p-1)/2)
What do you conclude about your classification?

@ Discriminant Analysis: Classification X
Prior Probabilities Use Covariance Matrix
@Allgroupsequal O Within-groups
O Compute from group sizes ® Separate-groups
Display Plots
[] Casewise results [ ] Combined-groups

] ‘ [] Separate-groups
Summary table [ ] Territorial map
[

[ ] Replace missing values with mean

Cancel Help

Reminder: Three main Assumptions.

1. Cases should be independent.
2. Predictor variables should have a multivariate normal distribution, and

3. Within-group variance-covariance matrices should be equal across groups.




@ Discriminant Analysis: Classification

Prior Probabilities
O All groups equal

Display
[[] Casewise results

[]
Summary table
[[] Leave-one-out classification

[[] Replace missing values with mean

Use Covarniance Matrix
@® Within-groups
O Separate-groups

Plots

[] Combined-groups
[] Separate-groups
[] Territorial map

OGN | Cancel

[ |

Note

We assumed “uninformative” prior probabilities (i.e. uniform distribution).
However, if we believe that the group sizes are according to the actual
probabilities we should observe in the data, we can use these

probabilities.




Questions

* Redo the analysis with all the explanatory variables. Run separate the
baseline case with equal variances and priors and different variances
and priors.

* Now cross-tab the predictions of LDA and NB. Which model predicts
best? Can you explain the differences?

* What if you look only for the cross-tabs in the subsample not used for
training?




Fraud

Measuring
fit

Genuine transaction

* Imagine we obtain the results below

* There is 92% accuracy.

* |s this a good fit?

True negatives °

@ ® ®

e ® o
® L

o
® ®
o o @
Truth Yes

No

Predicted

stolen?

Yes No
2 5
3 90



Accuracy

Measuring . srecisior
fit

There is more than one measure of fit.

Recall

F1 score

* Accuracy is a measure of overall fit:

#correct cases/#total cases=92/100=92%

* Precision measures the fraction of predicted yes that were correct:
# correct yes/(#correct yes+# incorrect yes)=2/(2+3)=40%

* Recall measures the fraction of yes that were correctly predicted:
# correct yes/(#correct yes+# incorrect no)=2/(2+5)=28.5%

* F1 score is the harmonic mean of precision and recall

2*precision*recall/(precision+recall)=33




Think

*\What is better? A model with 90%
accuracy and an F1 score of 40 or a model
with 75% accuracy and an F1 score of 607?




Balanced accuracy for imbalanced data

* If the data is very imbalanced, imagine you are trying to predict credit card
fraud that typically happens less than 1 out of 1000 times, a model that

predicts no fraud will have an accuracy of 99.9%.
* In these cases prediction and recall may be useful to look at.
 Alternatively, we can use balanced accuracy
* Balanced accuracy=(sensitivity+specificity)/2=62.7%
Where
* Sensitivity=true positive rate (recall)=2/(2+5)=28.5%

* Specificity=true negative rate=90/(90+3)=96.7%




Measuring
fit

* ROC (receiver operating characteristic) curve

1 * Sensitivity (true positive
rate)
0.8 * Specificity: true negative
rate
20.6
= The higher the (AUC) area
5 under the (ROC) curve, the
o 0.4 better.
0.2 Max AUC is 1, while 0.5 is a
random classifier.
0‘
0 0.2 0.4 0.6 0.8 1

1 - Specificity




Let the price of car be Y and the characteristics
of cars be X. To predict Y as a function of X:

A. We can use an LDA model.
B. We need to use na alternative model.




Table Lookup Models

Naive Bayes + LDA

(Multiple) Linear
Regression

(Multiple) Logistic
Regression




Multiple Linear Regression

REVISION
ANY QUESTIONS?




REVISION: MULTIPLE LINEAR REGRESSION

Target variable is continuous (different from previous cases)
Objective is to get a best prediction for the outcome variable

Example:
1. Plot of All (X, Y;) Pairs
2. Suggests How Well Model Will Fit




Revision: Linear regression

How would you draw a line through the points? How do you
determine which line “fits best’?




Revision: Linear regression

How would you draw a line through the points? How do you
determine which line “fits best’?

Slope changed




Revision: Linear regression

How would you draw a line through the points? How do you
determine which line “fits best’?

Slope unchanged

\

Intercept changed




Revision: Linear regression

How would you draw a line through the points? How do you
determine which line “fits best’?

Slope changed

Intercept changed




Revision: Least Squares

1. ‘Best Fit’ Means Difference Between Actual Y Values &
Predicted Y Values Are a Minimum. But Positive
Differences Off-Set Negative ones.

2. How good is the fit? R? measures the % of the
variation in Y explained by the variation in X. It varies

from O to 1.




Revision: Linear regression

Linear Equation

Y=mX+Db

™~ Change
) m=Slope| inY

Change in X
} b = Y-intercept




Revision: Linear Regression Model

Relationship Between Variables Is a Linear Function.

Population Population Random
Y-Intercept Slope Error

N S

Vi =Po +P1X; +5;
/

Dependent Independent (Explanatory)
(Response) Variable
Variable (e.g., Amount spent on

(e.g., sales) advertising)




Revision: Least squares

Least squares minimizes vertical (squared) distances.
=i.e. Min Y1, &2




Revision: Multiple case

* More than two variables cannot be presented graphically
(with two we can still have a 3D plot..).

» Equation becomes:
Y, =B B Xyt AB X tE,

*Ys and Xs are known (so take them as constants) and we
want to learn (infer) the Bs.




Table Lookup Models

Naive Bayes + LDA

(Multiple) Linear
Regression

(Multiple) Logistic
Regression




Logistic regression

» Similar to multiple regression, except that the dependent
variable is categorical.

* Note: Linear regression applied to binary variables is called a
linear probability model

Comparing the LP and Logit Models

Y=1

 Predicted values above 1 and
below 07

* Logistic model transforms Yoo

Iinear into an S_Shaped Aﬁ?éﬁébniu Model
function always between 0 and

1 (logistic function).




Logistic regression

» Transform probabilities to log-odds.
= Fit a linear regression model to log-odds.

Or
pl

1+ exp —(By +B,Xy; +...+B; Xy,)

» Maximum likelihood estimation vs. least squares
estimation: The principle for fitting the curve is no longer
minimizing the residuals (as was for linear regression) but
instead it is maximizing the likelihood of having observed the
given values.




DIY — Model vehicle sales

Two exercises

1. Redo the analysis in Naive Bayes and LDA with Logistic
regression

2. Objective: Modeling vehicle sales.
Data file: chO3_car _sales.sav

1.Why do we use log sales as dependent variable?
2.Why is multicollinearity a concern?
3.How do you select which variables to include?




DIY — Model vehicle sales

Analyze > Regression > Linear...

) [ FLinear Regression
 Linear Regression: Statistics w Densncert
Manufacturer [manufact Log-transformed sales [Insales
~Regression Coefficients | — . da [ ] & Log ! ] ! m
! Model fit @a Model [mode] ~Block 1 of 1 :
@ Estimates f Sales in thousands [sales) | - Save... I
= "] R squared change & 4-year resale value [resale] Braviors Next | [ Options ]
["| Confidence intervals [F] Descriptives ol Vehicle type [type] A R
= & Price in thousands [price] d:l i :
et : Wehicle type [type]
S i : Engine size [engine_s]
Le [Z Part and partial correlations & - .
- f Horsepower [horsepow) g?ncf mt!’uousam?ls [price]
[F] Covariance matrix [ colinearity diagnostics & Wheelbase [wheelbas] Enging size fenghne, &
= & Width [wicth] & Horsepowver [horsepow]
rResiduals 69) Length [length] g -W!'\eelba.se [wheelbas]
] Durbin-Watson & curb weight [curb_wat) I & Wickth [width]
drRin- f Fuel capacity [fuel_cap] Length [I.engl.h]
| Casewise diagnostics & Fuel efficiency [mpg) g Curh WEIgI':It [curb_wot]
& Iscore: 4-year resale value... Fuel ca?a.cuy {fuel_cap)
y Zscore: Type [Ztype] f Fuel efficiency [mpg]
& Zscore: Price inthousands [... e
f Zscore: Engine size [zengin... ethoc.

&) Zscore: Horsepower [zhors...

Selection Variable:

& Zscore: Wheelbase [zwhee... o I Rile
f Zscore: Width [zwidth] -
& Zscore: Length [zlength] - Case Labels:
é) Zscore: Curb wweight [zourh... I I
I .. S —
—— & Zscore: Fuel capacity [zfuel... WLS Weight:
e —— & Zscore: Fuel efficiency [zm... - I I
-_— -— -_— - - -
I T N W
I T A —
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Sum of
Maodel Soquares df Mean Sguare Sig.
1 Regression 130.300 10 13.030 13.30%5 .oooa
Fesidual 138.082 141 A7
Total 268,383 151
4. Predictors: (Constant), Fuel efficiency, Length, Price in thousands, Yehicle type,
Width, Engine size, Fuel capacity, Wheelbase, Curb weight, Horsepower
Adjusted Std. Error of
model F F Sguare R Sguare the Estimate
1 fE74 486 444 98960
4. Predictors: (Constant), Fuel efficiency, Length, Price in
thousands, VWehicle type, Width, Engine size, Fuel
capacity, Wheelhase, Curh weight, Horsepower
Statistics
Instandardized Standardized
Coefficients Coeflicients
Model  Variahles B Std. Error Beta 1
1 (Constant) 37 274 -1.401
Wehicle type 883 “Fa 2.670
Price in thousands -.046 T3 -3.5496
Engine size 356 a0 1.871
_ o Horsepower -.0oz 004 -.409
e ————— Wheelbase 042 023 1.784
E _=_ E‘=-E Wifidth - 028 042 - BY6
el — Length 014 014 1.032
Curh weight 146 3480 447
m Fuel capacity -.0a7 047 -1.203
Fuel efficiency 081 .04n 2023

isbon School

6h
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Conditional

Simple corrertio\:w Results
correlation Correlatidfs Collinearity Statistics
Model Zero-order Partial Fart Tolerance WIF
1 Yehicle type 274 214 61 304 3293
Price in thousands - 6532 -.290 s 187 5.337 _ _ _ Condition
Engine sie 135 156 113 162 5158 Model Dimension | Eigenvalue Index
1 1 9.49z20 1.000
Horsepower -.3849 -.043 -0 12 0.806 3 723 2 RTE
Wheelbase 292 1449 o8 2200 4.997 3 259 193
Wi dth 037 -.0a7 -.041 313 3.1493 1 050 14.051
Lenath 214 087 ez 78 5.605 5 019 27 594
Curh weight -041 038 027 A3 T.A44 B ona 25 047
Fuel capacity - 016 =101 -073 188 5.303 7 05 44 275
Fuel efficiency AN 168 22 21T 4604 g o0z 58 420
4 anz TE174
10 001 130,747
Tolerance is the percentage of the variance in a 1 000 | 148267

given predictor that cannot be explained by
the other predictors. Close to zero means

Collinearity diagnostics
multicollinearity.

Several eigenvalues are close
to 0, indicating that the
predictors are highly
intercorrelated and that small
changes in the data values may
Correlations — lead to large changes in the
See next slide estimates of the coefficients.

VIF — Variance inflated factors: Above 2 shows
signs of multicollinearity.




Different correlations

 Zero-order correlation is the simple correlation between dependente
and independente variable

* Partial correlation is the correlation between the dependent and
independente variable conditional on all the remaining independente
variables

* Part correlation is the correlation between the dependente variable
and the independente variable conditional on all the remaining
variables (only the independente variable is conditioned upon). The
primary reason for conducting the part correlation would be to see
how much unique variance the independent variable explains in
relation to the total variance in the dependent variable, rather than
just the variance unaccounted for by the control variables.




House prices

House prices depend on location
latitude (lat) and longitude (lon).

OLISBON Loures

AVERAGE PRICE €/M2 - Q12019

OPIVELAS e John capture this in a linear model
of the form:
Olivais
. Lumiar
AMADORA Carnide
‘ Y= Bo*Bylat, +B,lon, +e,
Marvila
Areeiro L A. True
Benfica i ,;E B False
=
OEIRAS "
Alcantara I~
" Ajuda. | ‘
Misericérdia 2,734 €lm?
2,964 €/m?
3,720 €
B 4st0eme
5,034 €/m?
6,578 €/m?

ALMADA




Modern
techniques

for model
building




Ridge regression

Modern
regression




House characteristics

* Location * Garden

. Area * Fireplace |
e Gatted community

* Typology * Equipped kitchen

* Construction year * Storage

* Bathrooms * Swimming pool

* Energy certificate * Suite As we add more
* Terrace

* Central heating characteristics, the

e Balcony _
e AC . Security prediction error of
. Garage e Seg View our model should:
A. Increase
B. Decrease

C. Stay the same




? Ridge regression

Reminder: shortcomings of linear regression

1. Predictive ability: We can decompose prediction error into
squared bias and variance. Linear regression has low bias
(zero bias) but suffers from high variance. So it may be
worth sacrificing some bias to achieve a lower variance.

2. Interpretative ability: with a large number of predictors, it
can be helpful to identify a smaller subset of important
variables. Linear regression doesn't do this.

Also: linear regression is not defined when p > n




General setup

Given fixed covariates x, eRPi=1,.,m WE formalize the model

yv.=f(x)+e,i=1..n
where the function is unknown (could be linear).
Our data contains information on (y,x).

This setup is valid for any dependence technique: regression,
decision trees, artificial neural networks, etc..




Example: subset of small coefficients

Let n =50, p = 30, and o2=1. The true model is linear with 10
large coefficients (between 0.5 and 1) and 20 small ones
(between 0 and 0.3).

Note:
Prediction error=True noise+Bias?+Variance of estimates

P~ — —

fCnm The linear regression fit:
£ o Squared bias = 0.006
] Variance = 0.627
I H H_H ]_H_\ Pred. error = 1+0.006+0.627=1.633

True coefficients

Question: Can we do better by shrinking the coefficients to reduce variance?




Example: subset of small coefficients

-- Linear regression i
—— Ridge regression

Prediction errar
| | | |

1.50 1.85 180 185 170 1.75 1.BO
]

High

Arnount of shrinkage

The linear regression:

Squared bias = 0.006

Variance = 0.627

Pred. error = 1+0.006+0.627=1.633

Basic idea of Ridge: More
complex models can have
small bias but have larger
variance. Simplify the
model by penalizing
complexity and reduce
variance of the estimated
coefficients. [Limit when
all coefficients equal 0].

Ridge regression:
Squared bias = 0.077
Variance = 0.403

Pred. error = 1+0.077+0.403:

1.48




Ridge regression

Ridge regression is like least squares but shrinks the estimated
coefficients towards zero. Given a response vector y and a predictor matrix X,
the ridge regression coefficients are obtained by minimizing:

(=X B AT 1312

Loss Penalty

Here A>0 is a tuning parameter, which controls the strength of the
penalty term. Note that:

= When A = 0, we get standard linear regression.
» When A = oo, we get 5 = 0.

» For A in between, we are balancing two ideas: fitting a linear model of y on X,
and shrinking the coefficients.




Example: visual representation of ridge
coefficients

Recall our last example. Here is a visual representation of the
ridge regression coefficients for A = 25:

True Linear Ridge
o | e
O - S
© 0
] } e
° 8
@ o) Cm
P g ;
G = . S
= o
g .
3 N 0 8
'H ..... i g e
] ﬁ :
o A o
o Ei
&
o]
[ [ [ | [ [ [

05 00 05 1.0 15 2.0 25




Important details

* Intercept: When including an intercept term in the regression, we usually leave
this coefficient unpenalized. Otherwise, we could add some constant amount c
to the vector y, and this would not result in the same solution. Hence ridge
regression with intercept minimizes

=By B ATE B

If we center the columns of X, then the intercept estimate ends up just being
Bo=Y, so we usually just re-center y and X, and don't include an intercept. [Think

about R2 in simple linear regression].

* Normalization: The penalty term is unfair if the predictor variables are not on the
same scale. (Can you see why?) Therefore, if we know that the variables are not
measured in the same units, we typically scale the columns of X (to have sample
variance 1), and then we perform ridge regression.




Bias and variance of ridge regression

The bias and variance are not quite as simple to write down for ridge
regression as they are for linear regression, but closed-form
expressions are still possible.

The general trend is:

* The bias increases as A (amount of shrinkage) increases.
* The variance decreases as A (amount of shrinkage) increases.

Question: What is the bias at A = 0? The variance at A = o0?




Example: bias and variance of ridge
regression

Bias and variance for the last example:

/

0.3 0.4
i
i

0.2

0.1

—— Bias"2
— Var

0.0
I

0 5 10 15 20 25




Mean squared error for the last example:

0.8

=+ | \\x
= e
ol TTm—
S
---- Linear MSE
— Ridge MSE
’ — Ridge Bias"2
o | — —— Ridge Var
=
| | | | | |
0 5 10 15 20 25




Questions

Question 1: OK, but this only works for some values of A. So how
would we choose A in practice?”

A. Calibrate with numbers used in the literature
B. Trial and error.
C. You can'’t




Questions

Question 1: OK, but this only works for some values of A. So how
would we choose A in practice?”

A. Calibrate with numbers used in the literature
B. Trial and error.
C. You can'’t

This is actually quite a hard question. We will use cross validation
methods in the following sections.




Questions

Question 2: “What happens when none of the coefficients are
small?”

A. A is smaller because there is no shrinkage to be done.
B. Ais larger since we have to shrink the coefficients even further.
C. Ais set independently of the size of the coefficients.




Questions

Question 2: “What happens when none of the coefficients are
small?”

A. A is smaller because there is no shrinkage to be done.
B. Ais larger since we have to shrink the coefficients even further.
C. Ais set independently of the size of the coefficients.

In other words, if all the true coefficients are moderately large, is it
still helpful to shrink the coefficient estimates? The answer is
(perhaps surprisingly) still “yes". But the advantage of ridge
regression here is less dramatic, and the corresponding range for
good values of A is smaller.




Example: moderate regression coefficients

Same setup as before, except now the true coefficients are all moderately
large (between 0.5 and 1).

&
% The linear regression fit:
) Squared bias = 0.006
"] Variance = 0.628
mn H [ Pred. error = 1+0.006+0.628=1.634

[ I I I I ]
0.0 Dz 0.4 0.8 0.8 10

True coefficients

Question: Why are these numbers essentially the same as those from the last
example, even though the true coefficients changed?




Ridge regression can still outperform linear regression in terms of
mean squared error:

---- Linear MGE
— Ridge MSE
o | — Ridge Bias"2
o —— Hidge Var
o
o |
o Y&:'LJ’ B e REEEEEEEEE
S — yd
o |
o




Variable selection

To the other extreme (of a subset of small coefficients), suppose a group of true
coefficients are identically zero and response does not depend on these
predictors.

The problem of picking out the relevant variables from a larger set is called
variable selection. This means estimating some coefficients to be exactly zero.

Again: Predictive ability vs. interpretative ability.

Question 3: “How does ridge regression perform if a group of the true
coefficients was exactly zero?”

A. If some coefficients are zero, ridge will shrink them substantially
B. If some coefficients are zero, ridge will set them to zero
C. If some coefficients are zero, ridge will not perform any shrinkage




Variable selection

To the other extreme (of a subset of small coefficients), suppose a group of true
coefficients are identically zero and response does not depend on these
predictors.

The problem of picking out the relevant variables from a larger set is called
variable selection. This means estimating some coefficients to be exactly zero.

Again: Predictive ability vs. interpretative ability.

Question 3: “How does ridge regression perform if a group of the true
coefficients was exactly zero?”

A. If some coefficients are zero, ridge will shrink them substantially
B. If some coefficients are zero, ridge will set them to zero
C. If some coefficients are zero, ridge will not perform any shrinkage

Answer: It depends on whether we are interested in prediction or interpretation.
We'll consider the former first.




Example: subset of zero
coefficients

Same setup as before, except now 10 true coefficients are large (between
0.5 and 1) and 20 are exactly O.

H - —
3
g % The linear regression fit:
i Squared bias = 0.006
" Variance = 0.627
== Pred. error = 1+0.006+0.627=1.633

I I I I I 1
0.0 0.2 0.4 0.8 0.8 10

True coefficients

Again these numbers are essentially the same .




Ridge regression performs well in terms of mean-squared error.

---- Linear M5E
— Ridge MSE
— —— Ridge Bias"2
—— Hidge Var

0.8

@ Prediction

e

0.4
I
/

0.2




As we vary A we get different ridge regression coefficients, the larger the A
the more shrinkage. Here we plot them against A.

' | True nonzero The red paths correspond to the
o u True zem true nonzero coefficients; the gray
k‘“ | paths correspond to true zeros.
TeS—— The vertical dashed line at A = 15
T e marks the point above which ridge
sl e regression's MSE starts losing to

Coefficients

linear regression.

@ Interpretation

Note: The gray coefficient paths are not exactly zero; they are shrunken, but still
nonzero.




Ridge regression doesn't perform variable
selection

We can show that ridge regression doesn't set coefficients exactly to
zero unless A = oo, in which case they are all set to zero.

In summary, ridge regression cannot perform variable selection, and
even though it performs well in terms of prediction accuracy, it does
poorly in terms of offering a clear interpretation.




Recap: ridge regression

= We |learned ridge regression, which minimizes the usual regression
criterion plus a penalty term on the squared L2 norm of the coefficient
vector. As such, it shrinks the coefficients towards zero. This
introduces some bias, but can greatly reduce the variance, resulting in
a better mean-squared error.

» The amount of shrinkage is controlled by A, the tuning parameter that
multiplies the ridge penalty. Large A means more shrinkage, and so we
get different coefficient estimates for different values of A. Choosing an
appropriate value of A is important, and also difficult. This can be done
using cross validation. (we will discuss this later).

» Ridge regression performs particularly well when there is a subset of
true coefficients that are small or even zero. It doesn't do as well when
all of the true coefficients are moderately large; however, in this case it
can still outperform linear regression over a pretty narrow range of
(small) A values.




DIY

» Data file: car_sales.sav

» Reproduce the previous analysis of car sales using the
SPSS command: Analyze > regression > optimal scalling
(CATREG).

* Then use a Ridge model.

* First recode the variable type so that a “0” becomes a “2”.
(command CATREG does not deal with zero valued
variables).




@ Categorical Regressicn: Output

@ Categorical Regression

ﬁ r Tables r Resampling
] _ [+ Multiple R @ Mone
Dependent Variable: cize.. i O Crossvaiidaion
&4 Manufacturer [manu... Insales(Mumeric) | .
m [+ Coefficients Mumber of falds: |10
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Correlations Original Variables

Vehicle type thPDIL:csi:]nds Engine size  Horsepower  Wheelbase Width Length Curbweight  Fuel capacity ~ Fuel efficiency
Vehicle type 1,000 019 -274 -017 -, 361 -,243 - 151 -, 488 -.620 A74
Price inthousands 018 1,000 B3 830 210 chl 197 568 AT -,545
Engine size -274 31 1,000 816 553 658 A74 788 708 -, 761
Haorsepower -017 830 A16 1,000 309 509 \369 G168 533 - 627
Wheelhase -, 361 210 553 ,309 1,000 G52 824 707 664 - 465
Width -.243 il JB58 509 652 1,000 688 Ga8 591 -541
Length - 151 187 A74 ,369 824 688 1,000 683 597 -433
Curhb weight -,489 568 789 616 707 688 683 1,000 837 -, 795
Fuel capacity -620 AT 708 633 664 AE1 597 837 1,000 -,801
Fuel efficiency A74 -545 -, 761 -627 - 465 -541 -433 -, 795 -,801 1,000
Dimension 1 2 3 4 4 & 7 g 9 10
Eigenvalue £,030 1,537 1,143 ,393 250 182 151 130 07 068
Correlations Transformed Variables
Price in
YWehicle type thousands Engine size  Horsepower  Wheelbase Width Length Curbweight  Fuel capacity ~ Fuel efficiency
Wehicle type 1,000 -018 274 017 L3681 243 151 489 G20 -574
Price in thousands -018 1,000 63 830 210 316 187 568 AT -,545
Engine size 274 B3 1,000 816 553 658 A74 789 708 -, 761
Horsepower 017 830 816 1,000 ,309 508 369 616 533 - 627
Wheelhase 361 210 553 300 1,000 652 824 707 64 - 465
Width 243 316 658 509 652 1,000 688 688 591 -541
Length 181 197 Aa74 369 824 Gag 1,000 683 A8y - 433
Curh weight 489 568 789 16 707 Gas 683 1,000 837 -, 795
Fuel capacity 620 AT 708 533 664 591 A8y 837 1,000 -,B01
Fuel efficiency 674 -545 -, 761 - 627 - 465 -541 -433 -, 795 -.801 1,000
Dimension 1 2 3 4 5 G 7 g ] 10
Eigenvalue 6,030 1,837 1,143 393 250 a2 151 130 107 068




Model Summary

Apparent
Adjusted R Frediction
fMultiple B R Square Square Errar
Standardized Data G385 469 432 531

DependentVariable: Log-transformed sales
Predictors: Wehicle type Price in thousands Engine size Horsepower Wheelbase
Width Length Curb weight Fuel capacity Fuel efficiency

Correlations and Tolerance

Coefficients
Standardized Coeflicients
Eootstrap
(1000)
Estimate of
Eeta Std. Erraor df F Sig.
Wehicle type 63 103 1 2,508 16
Price in thousands - 623 27 1 24186 000
Engine size AT 139 1 3,951 003
Horsepower -1849 81 1 1377 243
Wheelhase 161 128 1 1,585 210
Width - 046 104 1 183 JGE1
Length 004 150 1 .01 JA7E
Curb weight 153 164 1 JB6G 353
Fuel capacity - 027 ATT 1 023 880
Fuel efficiency 201 140 1 2,059 163

DependentVariable: Log-transformed sales

- R
‘ ' =" efEeonarics

Correlations Tolerance
After Before
Transformatio  Transformatio
Zero-Order Fartial Part Importance n n
Vehicle type 277 115 084 098 268 268
Price in thousands -538 -, 356 -,278 710 188 188
Engine size -077 227 70 -,068 166 166
Horsepower -,381 -,097 -071 153 142 142
Wheelbase 23 106 078 078 233 233
Width 063 -,039 -028 -,006 386 386
Length 178 003 002 002 188 188
Curh weight -,008 077 056 -,002 133 133
Fuel capacity 0258 -, 016 011 -,001 181 181
Fuel efficiency 085 124 091 04 208 208
DependentVariahle: Log-transformed sales
Compare to linear regression results
I . —
- - e—— a—
-
———



Ridge

ﬁ Categorical Regression: Regularization u

q r Method r Elastic Met Plots

@) MNone

@ Produce all possible Elastic Met plots

@:Eidge regression @& Produce Elastic Met plots for some Ridge penalties

Minimum: Maximum: Increment @ Range of values
|U'U | |1-U | |0-02 | First:
©) Lasso Last:

Minimum:  Maximum: Increment: @ Single value
on 0 ooz
1.0 e Yalue:
©) Elastic net

Minimum: Maximum: Increment: -

Ridge Penalty Values

idge regression: |00 0 0 .
Ridge regression: |0,0 1,0 0,1 List of penalty values
Lagso: 0,0 1,0 0,02
Add
Change
Remaove
|

[ Display regularization plots
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Coefficients for different levels of penalty

Ridge Paths

O Curb weight
() Engine size
o Fuel capacity
0,4 o Y |OFuel efficiency
Horsepower
o © O Length
O, += Price in thousands
- ~0 @ Vehicle type
02 < O g Wheelbase
T g 8 ©° > O Wwidth
(8]
0 8o
& 0,0000 s o o
c 0 ©
2
]
€
o -0,2+
(&)
-0,4-
-0,67
-0,87
T T T T T T
00 02 04 06 08 1,0

Standardized sum of coefficients




New dataset created with coefficients for each
penalty level

Q *Untitled5 [DataSet11] - IBM SPSS Statistics Data Editor
File  Edit View Data Transform  Analyze  DirectMarketing  Graphs  Ulilities  Extensions  Window  Help

Sl BLAE H BE B2 .i0%®
| |

| & ModelNumber || & RidgePenalty " & RSquare ” & StdSumCoeff " & RidgeBeta2 type " & RidgeBeta3_price " & RidgeBetad_engine
1 1,00 - AT 1,00 16 -.62
Mame: RidgePenalty

2 2,00 [Label: Ridge Penalty A .94 .16 -.60

3 3.00 | Type: Numeric A7 73 18 55

n 4.00 Measure: Scale 46 68 18 -53

5 5,00 .08 .46 .62 18 =51

6 6,00 10 .46 .54 19 -A48

7 7,00 12 45 53 A7 =47

8 8.00 4 45 50 A7 -.46

9 9,00 16 45 AT A7 -45

10 10,00 8 45 A4 A7 -44

11 11,00 20 A4 42 A7 -42

12 12,00 22 .44 A0 16 -

13 13.00 24 44 38 16 -40

14 14,00 .26 43 37 16 -39

15 15,00 .28 43 35 .16 -39

16 16.00 30 43 M4 16 -.38

7 17,00 32 43 33 16 =37

18 18.00 M4 A2 ) 15 -.36

19 19.00 .36 42 30 A5 -.36

20 20,00 .38 .42 .29 5 -.35 I S E— —

21 21,00 A0 A1 .29 15 -3 e e e—
—-— — T ——

22 22,00 42 A1 28 15 =34 - — ———
—-_— —-— —-— - -

23 23,00 A4 A 27 5 =33 " E—— W E—

N BT . T
24

24,00 A6 A1 .26 5 -33 spssﬂ
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The lasso

Modern
regression



Variable selection

Ridge regression:

= Can have better prediction error than linear regression in a variety of
scenarios. It works best when there is a subset of the true coefficients
that are small or zero.

= But it will never sets coefficients to zero exactly, and therefore cannot
perform variable selection in the linear model. While this does not
seem to hurt its prediction ability, it is not desirable for the purposes of
interpretation (especially if the number of variables p is large).

The lasso can!




The lasso

The lasso estimate is defined as minimizing

L (=X B) + AXLB)]

Loss Penalty

The difference between the lasso problem and ridge regression is the
use of a L1 (absolute value) vs. an L2 (squared) penalty.

Even though both problems look similar, their solutions behave very
differently.

Note: “Lasso"” is an acronym for: Least Absolute Selection and
Shrinkage Operator.




Tuning

The tuning parameter (A) controls the strength of the penalty, and (like
for ridge regression) we get:

« Blasso = BOLS when A = 0, and
o BIaSSO = 0 when A = oo,

For A in between these two extremes, we are balancing two ideas: fitting
a linear model of y on X, and shrinking the coefficients.

However, the nature of the L1 penalty causes some coefficients to be
shrunken exactly to zero.




Lasso vs. Ridge

The nature of the L1 penalty causes some
coefficients to be shrunken exactly to zero.

L2
penalty

T T T T
-2.5 0.0 2.5 5.0




Lasso vs. Ridge

The lasso is substantially different from ridge
regression on one dimension: it is able to perform
variable selection in the linear model.

As A increases:

1. More coefficients are set to zero (less variables
are selected), and

2. Among the nonzero coefficients, more shrinkage
IS employed.




Example: visual representation of lasso
coefficients
Our running example with n = 50, p = 30, 10 large true coefficients, 20

small. Here is a visual representation of lasso vs. ridge coefficients
(with the same degrees of freedom):

True Ridge Lasso
o
o .
— o) . o
o, - o
e R 0
©
8. 8 3
) ... .
s -, .
5 2 8 8
c © e .
T it .
"E .
o ) &
o g o .
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Important details

Intercept: When including an intercept term, we usually leave it
unpenalized, just as in ridge. Hence the lasso problem with intercept
minimizes

L= Po=x' i B) AP

As we've seen before, if we center the columns of X, then the intercept
estimate turns out to be B, = y. Typically, re-center y and X, and don't
include an intercept.

> Normalization: As with ridge regression, the penalty term is unfair if the
predictor variables are on different scales. First, scale the columns of X
(to have sample variance 1), and then solve the lasso problem.




Bias and variance of the lasso

The bias and variance are not quite as simple to write down for lasso
regression as they are for linear regression, but closed-form
expressions are still possible.

The general trend is:
 The bias increases as A (amount of shrinkage) increases.
« The variance decreases as A (amount of shrinkage) increases.

Question 1: What is the bias at A = 07?

A. Highest
B. Lowest
Question 2: The variance at A = o?
A. Highest

B. Lowest




Example: subset of small coefficients

Example: n = 50, p = 30; true coefficients: 10 large, 20 small

In terms of prediction error
(or mean squared error),
the lasso performs
comparably to ridge
regression.

0.2

- Linear MSE
— Lasso MSE
— Lasso Biash2
o | — —— Lasso Var
[ ]

T T T T T T

0 2 4 6 8 10




Example: all moderate coefficients

Example: n = 50, p = 30; 30 moderately large

= ---- Linear M3E
af 7| —— LassoMSE
— Lasso Bias"2
— Lasso Var
-
uy Iy
- &
Note that here, as opposed to ridge /
regression, the variance doesn't
[
decrease fast enough to make the -7
lasso favorable for small A e
o | _'""'":';':f'—"—"_"_"_'::_"_':_'"
(]
"--f
= |
[ ]




Example: subset of zero coefficients

Example: n =50, p = 30; 10 large, 20 zero

@
(=1

0.6

0.4

0.2

- Linear MSE
— Lasso MSE
— Lasso Biash2
o | — Lasso Var
o
[
8

[ [
10 12




Standardized Coefficients

Response variable is average credit debt.

Example: credit data

Predictors are income, limit (credit limit), rating (credit rating),
student (indicator), and others.

Ridge

g _ - — Income
- - == Limit

g - A Rating
Y Student

[ ] | )

&

g - "

o — J"---:-:L-..___ —

[

=

T

[ ]

=]

T ! ' '

1e-02 1a+00 1e+02 Ta+04

A

Standardized Coefficients

100 200 300 400

L}

=200

| asso

|
20

| | | | | | | |
50 100 200 500 2000 5000

A



Recap: the lasso

* The lasso is a variable selection method in the linear model setting.
The lasso uses a penalty like ridge regression, except the penalty is
the L1 norm of the coefficient vector, which causes the estimates of
some coefficients to be exactly zero. This is in contrast to ridge
regression which never sets coefficients to zero.

» The tuning parameter controls the strength of the L1 penalty. The
lasso estimates are generally biased, but have good mean squared
error (comparable to ridge regression). On top of this, the fact that it
sets coefficients to zero is good for interpretation.
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-
2 3.2 225 106.3 0.6 1_ Categorical Regression: Regularization
2 42000 3.5 210 1146 714 1
[ # Categorical Regression | = [}| method - Elastic Net Plots
© None @ Produce all possible Elastic Met plots
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Coefficients for different levels of penalty

Lasso Paths

0,49

0,29

=]

[=)
[ =)
[ =)
7

0,27

Coefficients

-0,4

0,67

-0,87

O

O Curb weight

) Engine size
Fuel capacity

) Fuel efficiency
Horsepower

O Length
Price in thousands
Wehicle type
Wheelbase

O wickh

0o

T T T T
02 04 06 08

Standardized sum of coefficients
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New dataset created with coefficients for each
penalty level

b “Untitled8 [DataSet14] - IBM SPSS Statistics Data Editor
File Edit View Data Transform  Analyze  Direct Marketing Graphs  Utilities Extensions  Window  Help

wwwwwww

= —
SHalljc~ BHERF H BE B4 H 109 “
| |
| & ModelNumber || & LassoPenalty ” & RSquare || & NPredictors || & StdSumCoeff || & LassoBeta? type || & LassoBeta3
1 1,00 .00 47 10,00 1,00 16
2,00 02 A7 8.00 80 14
3.00 04 46 7.00 69 12
4,00 06 45 6,00 59 A1
5.00 08 44 4.00 54 12
. 6 6,00 10 44 4,00 51 A1
7,00 2 43 4.00 A8 1
8,00 14 42 4,00 45 A1
I 9.00 16 42 4.00 43 A1
10,00 18 Y 3,00 40 10
11,00 20 40 3.00 39 10
12,00 22 A0 3,00 a7 09
13,00 24 39 3.00 36 09
14,00 26 38 3,00 34 08
15,00 28 ar 3.00 33 07
16,00 30 37 3,00 3 07
17.00 32 36 3.00 30 06
18,00 34 35 3,00 29 06
19.00 36 34 3.00 27 05
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Model selection and validation
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Regularization

Linear regression has generally small bias (zero bias, when the true
model is linear) but high variance, leading to poor predictions.

Modern methods introduce some bias but significantly reduce the
variance, leading to better predictive accuracy. More generally, modern
methods minimize

|y—Xp|, + R(B)

The term R is called a penalty or regularizer, and modifying the
regression problem in this way is called applying regularization:

» Note: Regularization can be applied beyond regression: e.g., it can be applied
to classification, clustering, principal component analysis.




Regularization

|y=XB|,+ 2R B)

In Ridge R(B 1,8

In Lasso R(B)= Z 1‘/8 |




Example: smoothing splines

Example with n = 100 points:

o ___e'ﬁ'-,_.- - iy = -
- . - o, - 5
m — ."H_ © — @ — o -
r‘—\“. .I III.
:. r
o % X - L | & - L
1 i
=) §
/ | | .
o - | L o — ! o o T =
i o £ &
| |
j | J
L |I ! o) — =
T i
Nt
o - b . o
I I | I I I I I I | I I I I I I I I
0.0 o2 04 o8 0.8 1.0 oo ] D.4 0.8 os 1.0 i} o2 o4 0.8 0.8 1.0

A too small A just right A too big




Setting the tuning parameter

» Each regularization method has an associated tuning parameter:
e.g., this was A for lasso and ridge regression in the penalized forms.

* The tuning parameter controls the amount of regularization, so
choosing a good value of the tuning parameter is crucial. Each tuning
parameter value corresponds to a fitted model. We also refer to this
task as model selection.

» A good choice of tuning parameter, depends on whether our goal is
prediction accuracy or interpretation. \We'll cover choosing the
tuning parameter for the purposes of prediction; choosing the tuning
parameter for the latter purpose is a harder problem.




* Location

* Area

* Typology

* Construction year
+ Bathrooms

c 6
e Central heating
* AC

* Garage

* Garden

s Fireplaece

* Gatted community
+Eathpped-kitenen
* Storage

* Swimming pool
+—Suite

* Terrace

* Balcony

* Security

* Sea View

House characteristics

John built his model to
predict house prices with
5 variables considered
irrelevant and thus
removed. The obtained R?
is 95%. He now knows that
he can predict 95% of the
variation in future house
prices.

A. True

B. False



Prediction error and test error
The setup is: y.= fx)+e,i=1,.n

x; are fixed (hnonrandom) predictor measurements, f(.) is the true
function we are trying to predict and g, are random errors.

Call (x;, y,), i=1,..,n the training data. Given an estimator f built
on the training data, consider the average prediction error over all
iInputs

PE(f)= EE >0 -f( ))Z}

Where y,, I=,..,L (the test data) are another set of observations,
independent of y,,..., ¥,




Suppose that f = f, depends on a tuning parameter 6, and we )
want to choose 68 to minimize the average prediction error PE(fy).

If we actually had training data y,,..., Y, and test data Vi YL

(meaning that we don't use this to build fy), we could simply
calculate the average test error:

TestErr(7) =+ X1,y (3)

as an estimate for PE(fy). The larger L is, the better this estimate.

We usually don't have test data. So what to do instead?




What's wrong with training error?

It may seem like

TestErr( )=+ 30,0~ Fo(x)and

TestErr(f) = 3" (3, = Jy(0)

shouldn't be too different. After all, y; and y’', are independent copies of each
other. The second quantity is called the training error: this is the error of f
as measured by the data we used to build it (in sample).

uuuuuu
cccccccccc
mmmmmmm
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Test sample

If the problem is getting a test sample, just randomly split the
data in two samples one for estimation (training set) and one for

validation (test set).

What is the problem of this approach?
A. Losing observations for training (reduced sample size)
B. Losing observations for testing (reduced sample size)




Cross-validation

Cross-validation is a simple, intuitive way to estimate predigtion
error, given training data (x; , y;), i=1,..,n, and an estimator f,, that
depends on a tuning parameter 6.

2.5

2.0

Even if @ is a continuous
parameter, it's usually not
practically feasible to consider
all possible values of 8, so we \

/
discretize the range and - '
consider choosing over some \ /
discrete set {0 ,.., 0.} . . . . .

1.5
e

1.0

Prediction error

0.5

0.0
1




K-fold cross validation

For a number K, we split the training pairs into K parts or “folds”
(commonly K=5or K=10)

1 2 3 4 5

Train Train Validation Train Train

K-fold cross validation considers training on all but the kth part,
and then validating on the kth part, iterating over k=1,..,K.

Note: When K = n, we call this leave-one-out cross-validation, because
we leave out one data point at a time.




K-fold cross validation: Procedure

» Randomly divide the set {1,..,n} into K subsets (i.e., folds) of roughly equal
size, F,,....,Fx

= For k=1,..,K:
 Consider training on F_ and validating on F

* For each value of the tuning parameter {6,,.., 6,,} compute the
estimate fy* on the training set, and record the total error on the
validation set:

@)= = fo ()

» For each tuning parameter value , compute the average error over all folds,

CV(6) = %Z e,(0)




K-Fold cross validation

Having done this, we get a cross-validation error curve CV(6) (this
curve is a function of 6):

/
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Example: choosing A for the lasso

The resulting cross-validation error

curve.

<
<+

Recall our running example R
from last time: n = 50, p = 30, |
and the true model is linear
with 10 nonzero coefficients.
Consider the lasso estimator
and use 5-fold cross-
validation.

3.0

CV error

25

/
E‘.

1.5

0 2 4 G 8 10 12




What happens if we really shouldn't be shrinking in the first
place? We'd like cross-validation, our automated tuning
parameter selection procedure, to choose a small value of A.

Recall the example where n = 50, p = 30, and the true model is
linear with all moderately large coefficients:

a.0

0.407

2.5

W oamor

L

Pradiction amar




Note

* The test error is a random variable subject to uncertainty.

* As such we can also calculate its standard error (the standard
error of the test error).

* In some cases we might opt for a model that is one s.e. away from
the the minimization error. This is a conservative strategy.

3.5 4.0

3.0
I

CV error

25

2.0

1.5

0 2 4 6 8 10 12




What to do next?

= After having used cross-validation to choose a value of the
tuning parameter we now fit our estimator to the entire training
set (x, y;), I=1,..,n, using the tuning parameter value.

= Example: In the lasso case, we solve the problem on all of the
training data, with A=0.407.

» \We can then use this estimator to make future predictions.




Recap: cross-validation

* Training error, the error of an estimator as measured by the
data used to fit it, is not a good surrogate for prediction error.
It just keeps decreasing with increasing model complexity.

» Cross-validation, on the other hand, much more accurately
reflects prediction error. If we want to choose a value for the
tuning parameter of a generic estimator (and minimizing
prediction error is our goal), cross-validation is a standard

tool.

» We usually pick the tuning parameter that minimizes the
cross-validation error curve.
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Ridge with cross validation

@ Categorical Regression: Output

r Tables
Multiple R

[T AMOVA

Coefficients

[ Iteration history

Caorrelations of ariginal variables

[ Correlations of transformed variables

[7] Regularized models and coefficients

r Resampling

@ Crossvalidation!

Mumber of folds: 10

632 Bootstrap

Analysis Variables:

Insales
type

price
engine_s
horsepow
wheelbas
width
length
curb_wagt
fuel_cap
mpg

Category Quantifications:

Descriptive Statistics:
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Model Summary

_ Regularizatio Apparent Expected Prediction Error
Adjusted R n"R Square” Frediction
Multiple B R Square Square (1-Errar) Errar Estimate®  Std. Error I
Standardized Data 653 A27 386 358 642 BT 75 152
Raw Data 1,400 1,457 61

Penalty 920
DependentVariable: Log-transformed sales
Predictors: Wehicle type Price in thousands Engine size Horsepower Wheelbase Width Length Curb weight Fuel capacity Fuel efficiency

a. Mean Squared Error (10 fold Cross Validation).

Ridge Paths
O Curb weight .
O E:;in;v:ilzge Coefficients
. Fuel capacity i .
0,4 o 9 |OFuel efficiency Standardized Coefficients
- Horsepower Bootstrap
4 o O Length (1000
@ Price in thousands Estimate of
0,27 38, o © Vehicle type Beta Std. Error df F Sig.
B © g d Wheelbase
8 % O wicth Wehicle type A7 024 1 24,429 000
g 0,0000 — O o Frice inthousands -, 245 020 1 144,060 ,0oo
@ oo Engine size 0249 025 1 1,337 250
o
e Horsepower - 137 021 1 41,433 ,0oo
[ 1] —
S 0.2 Wheelhase 100 023 1 18,757 000
Width 029 026 1 1,219 271
0.4 Length 076 026 1 8,293 005
Curh weight 009 020 1 204 Nt
Fuel capacity ooy 028 1 068 a4
067 Fuel efficiency 038 023 1 2,744 100
Dependent Variable: Log-transformed sales
-0,57 ] - o -
I ] | 1 ] | - — T E——
00 0,2 0.4 0,6 08 10 - — ———
-_— -_— -_— - - -
Standardized sum of coefficients — — — T —

¥-axis reference lines at optimal model and at most parsimonious model within 1 Std. Error. m
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New dataset created with coefficients for each
penalty level with EPE and APE

@ *Untitled6 [DataSet12] - IBM SPSS Statistics Data Editor
File  Edit View Data Transform  Analyze  Direct Marketing  Graphs  Utilities  Extensions  Window  Help

SHelec BLdE A BE B2H 9% %

|
| & ModelNumber | & RidgePenalty | & RSquare | & StdSumCoeff | & APE | S EPE | & SE | & EPE Raw | & SE Raw
1 1,00 .00 47 1,00 53 61 08 1,32 1
2,00 02 A7 94 53 60 08 1.31 1
3,00 04 A7 73 53 60 .08 1,30 A
4 4,00 06 46 68 54 60 08 1,30 1
5 5,00 08 46 62 54 60 08 130 1
5 6.00 10 46 B4 54 60 .08 1,30 1
7.00 12 45 53 55 60 08 1.30 1
8,00 14 45 50 55 60 07 1,30 A
9 9,00 16 45 47 55 60 07 131 1
10 10,00 18 45 44 55 60 07 131 1
11,00 20 A4 42 56 60 07 1,31 A
12,00 22 44 40 56 61 07 1.32 1
13,00 24 44 .38 56 61 07 1,32 A
14 14,00 26 43 37 57 61 07 132 1
15 15,00 28 43 35 57 61 07 133 1
[ ae 18 NN an A2 24 £7 4 n7 423 1
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Plot APE and EPE

e Graphs > Chart builder

r - 3
@ Chart Builder M @ Element Properties |.—2(§ | k
Variables: Chart preview uses example data Edit Properties of E
Setcolor Pom.t1 N @ l
. H-Axist (Point1) ¢
i i -Axis1 (Poin i
y R Sguare [RSqgua... Variable Paie Y-Adis1 (Paint1)
T : L
& Standardized Su... ! ; — ]
pparent Predicti... T o) ,
& A t Predicti | : S = Statistics
e& Expected Predict... ! E ; 5 Q Variable: Multiple Variables L
4 Standard Error [SE] Peo o 5 © o Statistic: i
& Expected Predicti... ba o] 0 —— - L
& Standard Error (R... E o o
& Ridge Beta Vehic... g S o Set Parameters
& Ridge BetaPrice .. .l § & ! o] o i
N sl | | R .
Y- Pairs: L
il caffggg; (scak @@ Ridge Fenalty APE - RidgePenalty + L
) - EPE - RidgePenalty @ i
Gallry BasicElements GroupsIPantID TiesrFootnaes. - :
Choose from: l
Favorites ™ options... | i
Bar o€ C)DC ao‘ @® | Co e L
Line P &+ o r
Area L
— Pie/Polar
e Histogram E E |
I BT v —
Boxplot N
© Dual Axes !
L y = 4
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@ Categorical Regression: Output

r Tables
[ Multiple R
] ANOVA

r Resampling

[ Coefficients
[ Iteration history

[ Correlations of transformed variables
7] Regularized models and coefficients

Mumber of folds:
(632 Bootstrap

|3 Correlations of original variables Number of samples

o |

Analysis Variables:

Category Quantifications:

Lasso with crossvalidat

10N

Insales
type
price +
engine_s
horsepow
wheelbas o o
width Descriptive Statistics:
length
curb_wagt
fuel_cap +
mpg
Conti Cancel Hel =y ' ' ' ' ' ' ' Iy
2 L nue” c ” 5 ] 1. @ Categorical Regression: Regularization ﬂ
2 —_— — — — 1
@ Categorical Regression | = | r Method r Elastic Met Plots
@ Mone @p e all possible Elas ts
Dependent Variable: ) ) — - -
— - @ Ridge regression @ F ce Elas et plots some Ridge penaliies
& Manufacturer [manu... |Insa|es(Numer|c} | .
&a Model [model] ———— Minimur agmum:  Increme @ Range of values
§ Sales in thousands ... e 1 12 =
4-yearresale value [.. Independent Variable(s): g N
) 2 : Regularization. .. @ Lasso a5
& Zscore: 4-yearresa... type(Nominal) - h = Las
gismrei 'PFYFJE [.?-13"::]9] prica(Mumeric) i Minimum:  Maximum: Increment: ® Single value
score: Price intho... ; -
| |ename.stiumens o o -
& Zscore: Engine size... horsepaw(Numeric) Value
gﬁ’Zscoref Horsepowe.. wheelbas(Numeric) © Elastic net
& Zscore: Wpeelba;e... width(Numeric) Minimum . =
.stcore. Width [zwidt... length{Numeric) - - idge Penalty Values
& Zscore: Length [zle... curb_wgt(Numeric) mIgge regress List of penalty values
f Zscore: Curb welgh.... fuel_cap(Numeric) A Lass B
f Zscore: Fuel capaci... mpg(Mumeric) = A
& Zscore: Fuel efficie... —
[ ok |[ Paste || Reset || cancel|[ Hep | | Remove
2 19,390 34 180 110,5 727 1
2 24,340 3.8 200 1011 741 1 Display regularization plots
2 45,705 57 345 104.5 73,6 ‘1_ E_)onlinue” Cancel ” Help ]
2 13,960 1.8 120 av 1 66,7 1 |




Model Summary

_ Regularizatio Apparent Expected Prediction Error
Adjusted R n"k Sgquare” FPrediction
Multiple B R Square Square (1-Error) Error Estimate®  Std. Error I
Standardized Data 642 412 400 358 642 JGET OFT 152
Raw Data 1,400 1,448 V6T

Penalty ,320
DependentWariable: Log-transformed sales
Predictors: WVehicle type Price inthousands Engine size Horsepower Wheelbase Width Length Curb weight Fuel capacity Fuel efficiency

a. Mean Squared Error (10 fold Cross Validation).

Correlations and Tolerance

Correlations Tolerance
After Before
Transformatio  Transformatio
] Zero-Order Fartial Fart n n
Coefficients Wehicle type 277 18 086 260 269
Standardized Coefficients Price in thousands =635 -.354 - 276 188 &8
Bootstrap Engine size -077 223 167 66 166
(1 |:||:||:|:| Horsepower -.381 - 086 =070 142 142
Estimate of Wheelhase 231 07 078 233 233
Eeta Std. Error df F Sig. Width 063 -,038 -,028 386 386
Vehicle type 061 052 1 1,392 240 Length 178 006 004 168 169
Curb weight -,008 070 051 133 133
Price in thousands -.402 058 1 45089 000 IR e : : : : :
Fuel capacity 025 -014 =011 181 181
Engine size 000 005 0 000 Fuel efficisncy 095 120 088 205 205
Horsepower 000 003 0 000 ) Dependent Variable: Log-transformed sales
Wheelbase 133 065 1 4 227 042
Width Ru]u]y] Joog 0 Ru]u]y]
Lenagth 000 041 0 onn
Curlh weight 000 003 0 .onn —_—— =
Fuel capacity 000 008 0 Rulu]y — — — ——
Fuel efficiency ,aoa ,aoa 0 — e mmm !
DependentVariable: Log-transformed sales

Lisbon School
of Eeanamics
&Manegement

6}




Lasso Paths

) Curb weight
) Engine size
a Fuel capacity
0,4 = | O Fuel efficiency
. Horsepower
= 2 Length
Price in thousands
0,24 = o Yehicle type
. a =] Wheelbase
s CWickh
‘E 0,0000 = —
@ ©
o
5
2 02
L
04
-0 5
05
] 1 1 ] ] ]
00 02 04 0,5 08 10
Standardized sum of coefficients
= = = X-axis reference lines at optimal model and at most parsimonious model within 1 Std. Error.
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New dataset created with coefficients for each
penalty level with EPE and APE

Q *Untitled7 [DataSet13] - IBM SPSS Statistics Data Editor
File  Edit View Data Transform  Analyze  DirectMarketing Graphs  Utilities  Extensions  Window  Help

BHae - Bl NEE EE 0% %
|
| & Modeumber | & LassoPenalty | o® RSquare | & NPredictors | ¢ StdSumCoef | & APE | £EPE | £ SE | L EPERaw | &£ SEF

1 1.00 00 47 10.00 1.00 53 61 08 132

2 2,00 02 47 8.00 80 53 59 08 129

3 3.00 04 46 7.00 69 54 59 08 129

4 4,00 06 45 6.00 59 56 59 08 129

5 5.00 08 44 400 54 56 59 08 129

6 6.00 10 44 4,00 51 56 60 07 130

7 7.00 12 43 400 48 57 60 07 131

8 8.00 14 42 4,00 45 58 61 07 132

9 9.00 16 42 400 43 58 62 08 134

10 10,00 18 e 3.00 40 59 62 08 135

1 11,00 20 40 3.00 39 60 62 08 135

12 12,00 2 40 3.00 37 60 63 08 136

13 13,00 24 39 3.00 36 1 63 08 138

14 14,00 26 38 3.00 34 62 64 08 139

15 15,00 28 37 3.00 3 63 65 08 141

16 16,00 30 37 3.00 3 63 66 08 143

17 17,00 32 36 3.00 30 64 o7 08 145

18 18.00 34 35 3.00 29 65 68 08 147

19 19,00 36 34 3.00 27 66 69 08 149

20 20,00 38 n 3.00 26 67 70 08 1,51

21 21,00 40 32 3.00 24 68 7 08 1,54

22 22.00 42 X 3.00 2 69 72 08 157

23 23,00 44 29 3.00 2 7 73 08 159

24 24,00 46 28 3.00 20 72 75 08 162

25 26,00 48 27 3.00 19 73 76 08 1,65

2 26.00 50 25 3.00 a7 75 77 08 1,68

27 27.00 52 24 3.00 16 76 79 09 171

—_— 28 28.00 54 2 2,00 14 78 80 09 173

— 29 29.00 56 2 2,00 13 79 81 09 175
-_— | _— .
| L _______J L |
— — o ——
-_— -_— - N T -

I BT S W
I T v L]
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Plot APE and EPE

e Graphs > Chart builder
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=

i@ Chart Builder

® _.| ﬂ'ﬁ Element Properties

Variables:

Chart preview uses example data Edit Properties of.

< Model Number [M...
@? Lasso Penalty [L...

& R Square [R3qua...
f Mumber of Select...
& Standardized Su...

& spparent Predicti..
& Expected Predicti...
&7 Standard Error [SE]
& Expected Predicti...
f Standard Error (R...
g@ Lasso Beta Vehic...

. Ry Ny

Mo categories (scak
variabig)

- Setcolar |P0mt1 | ®
H-Axis1 (Point1)
“Wariable Pairs Y-Axis1 (Point1)
i 5o o . d:)f“ Statistics
B = Variable: Multiple Variables
L E o o) -
- = (o) Statistic:
[ o O“] (8)
e - o Value -
] i Q O Set Parameters
o= (O T
dliei| oo “°
— | | I ' o = Y-X Pairs:
i@& Laszo Panalty i APE - LassoPenalty
! EPE - LassoPenalty

Gallry Basic Elements Groups/PointID TiesiFaotnotes

Choose from:

ME~

Element

Favorites
Bar

Line
Area

6=

Pie/Polar
Scatter/Dot
Histogram
High-Low

Boxplot
Dual Axes

[ DK ” Paste ” Reset] Cancel He_lE Apply Close He_i.E
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