
An 
introduction 
to predictive 
models



Conceptual Model
Target/dependent variable + explanatory/independent variables

[Is this a causal model?]

- Dependent variable choice depends on objective/research 
question

- Explanatory variables originates from theoretical/conceptual 
considerations.

• Model building example : Effectiveness of search analytics on 
sales (work backwards)

Attract 
customer to 
website (e.g. 

via google 
adwords)

Convince 
visitor to stay 
and consider 
my products

Make a sale of 
products from 

my website 
(today or in 
the future)



Conceptual Model Example:
Website visitors (Multiple steps)

First increase webpage traffic – Not enough if visitor 
leave without purchasing today or in the future 
(think in terms of customer lifetime value).

Intermediate step – make customer search and 
direct them to useful products. Also, try to register 
them so we can send them latter info and 
promotions that could make a sale.

When shopper adds products to basket– Make a sale!



Conceptualization/theory: Targeting

Each step may require a different tool. Which?

Does one method fit all customers? How should we target different 
customers?

Which webpage layout should I present to different customers?

Which products are more likely to make a sale? On which type of 
customers?



Examples

• Smart spam classifiers protect our email by learning from massive 
amounts of spam data and user feedback; 

• Advertising systems learn to match the right ads with the right 
context; 

• Fraud detection systems protect banks from malicious attackers; 

• Anomaly event detection systems help experimental physicists to find 
events that lead to new physics, store sales prediction; 

• Web text classification; 

• Customer behavior prediction; 

• Ad click through rate prediction; 

• Malware classification; 

• Product categorization; 

• Hazard risk prediction; 



Planning step by step

1. Translate the business problem

2. Select the appropriate data

3. Fix problems with the data (preprocess) 

4. Get to know the data (explore)

5. Build models (estimation)

6. Assess models (validation)

7. Deploy models

8. Assess results (compare to objectives established in 1.)

Chapter 2

Chapters 3 and 4

Business view



Model building and assessment

Apply 

Model

Induction

Deduction

Learn 

Model

Model

Tid Attrib1 Attrib2 Attrib3 Class 

1 Yes Large 125K No 

2 No Medium 100K No 

3 No Small 70K No 

4 Yes Medium 120K No 

5 No Large 95K Yes 

6 No Medium 60K No 

7 Yes Large 220K No 

8 No Small 85K Yes 

9 No Medium 75K No 

10 No Small 90K Yes 
10 

 

Tid Attrib1 Attrib2 Attrib3 Class 

11 No Small 55K ? 

12 Yes Medium 80K ? 

13 Yes Large 110K ? 

14 No Small 95K ? 

15 No Large 67K ? 
10 

 

Test Set

Learning

algorithm

Training Set



Model types

Directed data mining 
or supervised learning

Undirected data 
mining or 

unsupervised learning



Classical techniques for model building 
(supervised learning/ directed data mining)

Table Lookup Models

Naïve Bayes + LDA

(Multiple) Linear Regression

(Multiple) Logistic Regression



John went to an auto-dealer to buy a second-
hand car and is not sure if the price is fair. How
can he make a decision?

A. Ask a friend

B. Search for the price of similar cars

C. Check the price of the car when new



Table lookup

Based on the idea of similarity.

Building a lookup table: 

• Choose input variables and the output score.

• Non-categorical variables must be “discretized”.

• Train the model by looking at the output for given set of input variables. 
E.g. Average second hand car prices per set of attributes. Average price is 
the output.

Using the lookup table

• New observations are compared with the elements in the lookup table. A 
label is assigned.

• The value score (output) is assigned.



Table Lookup example

• How to score the risk rating for an 
individual with 30 years of age, not 
owing a house (and no other 
loans), earning 30,000 euros per 
year and asking for a loan of 
10,000 euros?

Risk rating Age Income Effort
Home-
owner

5 1 1 1 1

4 2 1 1 1

3 2 2 1 1

3 2 1 2 1

2 2 2 2 1

4 1 2 1 1

2 1 2 2 1

3 1 1 2 1

4 1 1 1 2

3 2 1 1 2

2 2 2 1 2

2 2 1 2 2

1 2 2 2 2

3 1 2 1 2

2 1 2 2 2

2 1 1 2 2

Income Age
effort (loan to 
income) Home owner

1 <20,000 1 <25 1 <2,5 1 Yes

2 >20,000 2 >25 2 >2,5 2 No

Lookup table Variable description



Table lookup

Choosing dimensions

• Dimensions should affect the target variable.

• Dimensions should not be correlated with each other (income and age?).

• Increase cell estimate accuracy. Avoid cells with few training examples (e.g. 
[2,1,2,1]?). 

• Trade-off number of dimensions vs. partitions (levels) of each dimension.

Choose

Partitioning dimensions

• Large (finer) partitions (levels) increase accuracy of the target while reducing the 
accuracy of the estimate.

• Nominal dimensions are naturally discrete. Some could be aggregated together 
(e.g. number of children: 0,1,+2).

• Metric dimensions can be discretized (e.g. income, age, etc). Choose equal sizes 
(e.g. quantiles).

Partition



Table lookup

• Estimation [or Training]

• For numeric target variables: Choose average 
(median) per class.

• For categorical target variables: Use a score 
(proportion of each cell that possesses the 
given class label).

• Spare and missing data

• If some cells do not have enough training 
cases either (i) reduce the number of partitions 
or (ii) reduce the number of dimensions.



Estimation/Training

X1 X2 X3 Y

1 1 1 C

1 1 2 A

1 1 2 A

1 1 2 C

1 2 1 B

1 2 2 C

1 2 2 A

1 2 2 C

2 1 1 B

2 1 1 A

2 1 1 A

2 1 1 B

2 1 1 A

2 1 2 C

2 1 2 A

2 2 2 C

2 2 2 C

X1 X2 X3 Predict?

1 1 1 C

1 1 2 A

1 2 1 B

1 2 2 C

2 1 1 A

2 1 2 A/C?

2 2 1 Overall?

2 2 2 C

Training set Model

Example: three factors with two levels each (1,2) and one categorical outcome with 
three levels (A,B,C)



How can I compare the profitability of multiple
customers in my store?

A. By how much they spend

B. By how frequently they buy

C. By the last time they bought something

D. By the type of products they buy



RFM – A 
Table lookup 

model

Recency – how recently has the customer 
made a purchase. The lower the recency the 
less likely a customer is to make a purchase.

Frequency – How frequently the customer 
makes a purchase. Customer with frequent 
purchases are more likely to buy.

Monetary – How much have the customer 
spent. Customers who spend large amounts 
are more likely to spend more again.

Table lookup with tree dimensions



DIY – Analysis from transaction 
data

File: rfm_transactions.sav

• How are the R/F/M scores constructed/distributed?

• How is the combined RFM score calculated? Importance?



SPSS – creating an RFM model

Get Ch03_rfm_transactions.sav and Ch03_customer_information.sav 
from Moodle.

In a transaction data file, each row represents a separate transaction, 
rather than a separate customer, and there can be multiple transaction 
rows for each customer. 



RFM model

The transaction dataset contains variables with the following 
information:

• An id (e.g. customer).

• The date of each transaction. 

• The monetary value of each transaction.



RFM model

The transaction dataset contains variables with the following information:

• An id (e.g. customer).

• The date of each transaction. 

• The monetary value of each transaction.



RFM model
Direct Marketing > Choose Technique



The new dataset contains only one row (record) for each 
customer. The original transaction data has been aggregated by 
values of the customer identifier variables. The identifier 
variables are always included in the new dataset; otherwise you 
would have no way of matching the RFM scores to the 
customers.

The combined RFM score for each customer is simply the 
concatenation of the three individual scores, computed as: 
(recency x 100) + (frequency x 10) + monetary. 

Note that 353 is not “larger” than 335.

The chart of bin counts displayed in the Viewer window shows 
the number of customers in each RFM category.



Number of customers in each 
of the 5x5x5 (125) RFM 
categories.

Ideally, relatively even 
distribution of customers 
across RFM categories. 

If there are many 
empty/uneven categories 
change the binning method:
- Use nested instead of 
independent binning.
- Reduce the number of 
possible score categories (bins).
- When there are large 
numbers of tied values, 
randomly assign cases with the 
same scores to different 
categories.





Classification
Low frequency
Perhaps new
customers. What
strategy?

High frequency, 
low recency. 
Lost customers?

555 - the best
customer?



Data > Merge Files > Add Variables



The final dataset ready for use



John was so successful buying a car that he now 
wants to use the expertise he gained into the car 
market to predict the price of all cars in the 
market. 

A. That is easy he just needs to do Table lookup 
with all the car prices and characteristics.

B. Difficult since there are too many cars.

C. That is impossible since cars vary in so many 
different ways, it is impossible to get enough 
cars to compare.



Classical 
techniques

Table Lookup Models

Naïve Bayes + LDA

(Multiple) Linear 
Regression

(Multiple) Logistic 
Regression



Naïve bayes

Table lookup quickly 
become intractable 

(curse of 
dimensionality): 

Example: 2 inputs with 10 levels is 
100 cells, 3 inputs is 1,000 and 4 
inputs is 10,000. A sample of 
100,000 individuals gives an 
average of 10 per cell!

Naïve Bayes works 
around this.

How: Independence assumption. 
Use prediction of each input on 
target, independently from  the 
other inputs. 

Example: 4 inputs with 10 levels 
means 10+10+10+10 instead of 
10*10*10*10.



Naïve bayes

Bayes Law

P(A|B)=P(B|A)*P(A)/P(B)

• This is useful because in many cases directly estimating one of 
the (conditional) probabilities is easier than estimating the 
other.

• The method is naïve because it (naively) assumes that the 
variables are independent from each other.



Naïve Bayes
Derivation

Pr 𝑌 𝑋1, … , 𝑋𝑘 ฎ=
𝑏𝑦 𝐵𝑎𝑦𝑒𝑠′ 𝑇ℎ𝑒𝑜𝑟𝑒𝑚

𝑃 𝑌 ∗ 𝑃 𝑋1, … , 𝑋𝑘 𝑌

𝑃(𝑋1, … , 𝑋𝑘)
ฎ=

𝑏𝑦 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒

𝑃 𝑌 ∗ 𝑃 𝑋1 𝑌 ∗ 𝑃 𝑋2 𝑌 ∗ ⋯ ∗ 𝑃(𝑋𝑘|𝑌)

𝑃(𝑋1, … , 𝑋𝑘)

• If one of the inputs is not know, say the kth, just drop it from the 
equation.

• All elements in the numerator are very easy to obtain, the 
denominator is more difficult. Fortunately, it is fixed so that it can be 
treated as a constant.



Naïve Bayes

In the binary case the odds ratio is:

Pr(𝑌 = 1|𝑋1, … , 𝑋𝑘)

Pr(𝑌 = 0|𝑋1, … , 𝑋𝑘)

=
Pr(𝑌 = 1)

Pr(𝑌 = 0)
∗

Pr 𝑋1 𝑌 = 1

Pr 𝑋1 𝑌 = 0
∗ ⋯ ∗

Pr(𝑋𝑘|𝑌 = 1)

Pr(𝑋𝑘|𝑌 = 0)

So Pr(X1,…,Xk) drops from the equation.

From the odds ratio we can recover the probability since:

Odds=
Pr(𝑌=1|𝑋)

Pr(𝑌=0|𝑋)
=

Pr(𝑌=1|𝑋)

1−Pr(𝑌=1|𝑋)
 or Pr 𝑌 = 1 𝑋 = 1 −

1

1+𝑜𝑑𝑑𝑠

Main disadvantage of Naïve Bayes is the independence assumption. 
It can be checked!



Example

Example

No Color Type Origin Stolen?

1Red Sports Domestic Yes

2Red Sports Domestic No

3Red Sports Domestic Yes

4Yellow Sports Domestic No

5Yellow Sports Imported Yes

6Yellow SUV Imported No

7Yellow SUV Imported Yes

8Yellow SUV Domestic No

9Red SUV Imported No

10Red Sports Imported Yes

Classify a Red, SUV, Domestic for getting stolen

Need to calculate the following probabilities: 

P(Red|Yes), P(SUV|Yes), P(Domestic|Yes) , 

P(Red|No) , P(SUV|No),  P(Domestic|No)

Results: 

P(Red|Yes) = 3/5 = .0.6 

P(Red|No) = 2/5 = 0.4

P(SUV |Yes) = 1/5 = 0.2

P(SUV |No) = 3/5 = 0.6

P(Domestic|Yes) = 2/5 = 0.4

P(Domestic|No) = 3/5 = 0.6

P(Yes) = 5/10 = 0.5

Odds=
P(Yes|Red,SUV,Domestic)
P(No|Red,SUV,Domestic)

=
P(Yes)∗P(Red|Y)∗P(SUV|Y)∗P(Domestic|Y) 
P(No)∗P(Red|N)∗P(SUV|N)∗P(Domestic|N) 

= 
0.5∗0.6∗0.2∗0.4 
0.5∗0.4∗0.6∗0.6

= 𝟎. 𝟑𝟑𝟑
Answer: A Red domestic SUV is 3 times more likely not to get stolen 
than to get stolen. Or it has a 25% probability of getting stolen.



DIY – Predictor Selection

Objective: To identify characteristics that are indicative of people who are 
likely to default on loans. Use those characteristics to identify good and bad 
credit risks.

Data: File ch03_bank_loan.sav. 

> 850 past and prospective customers. First 700 cases are customers who were 
previously given loans. Next 150 cases are “unclassified”. 

> Split the 700 customers into training and test samples in order to create and 
validate a model. 

> For the remaining 150 cases, since they have valid values for the predictors, 
the procedure will generate model-predicted probabilities for these cases 
when you save these values to the dataset. 

• Note: Naïve Bayes in SPSS can also be called as a FUNCTION available with in 
the SPSS statistics server. Requires Syntax (i.e. non menu based) to run. 
Command syntax for reproducing these analyses can be found 
in ch03_bank_loan.sps.



Naïve bayes



Select a training 
and test sample

We can also start by randomly selecting 70% of the 
valid sample. We will use the 30% for testing. But to 
guarantee replicability we must set the seed of the 
random number generator. 
- This gives you more control over the samples.



Syntax
// First set the random seed and select about 70% of the cases for model building

SET SEED 9191972.

IF (MISSING(default)=0) training = rv.bernoulli(.7) .

EXECUTE .

// Naivebayes command with selected variables (exclude preddef1 preddef2 preddef3 training from predictors)

NAIVEBAYES default

  /EXCEPT VARIABLES=preddef1 preddef2 preddef3 training

  /TRAININGSAMPLE VARIABLE=training

  /SAVE PREDVAL PREDPROB.

// Produce a means table and crosstabulation to look at the distributions of predictors by PredictedValue

MEANS

  TABLES=employ address debtinc creddebt  BY PredictedValue

  /CELLS MEAN COUNT STDDEV  .

CROSSTABS

  /TABLES=ed  BY PredictedValue

  /FORMAT= AVALUE TABLES

  /CELLS= COUNT ROW

  /COUNT ROUND CELL .



NaiveBayes output



How the predictors affect the model-predicted 
probability of response?

• Analyze > Compare Means > Means... 



How the predictors affect the model-predicted 
probability of response?



How the predictors affect the model-predicted 
probability of response?

• Analyze > Descriptive Statistics > Crosstabs...



Crosstabs



Discriminant Analysis

Let us return to the derivation with one explanatory variable (k=1) and impose a normal 
conditional distribution (and assume equal co-variances for all K groups):

Pr 𝑌 = 𝑘 𝑥 =
𝑃 𝑌 = 𝑘 ∗ 𝑃 𝑥 𝑌 = 𝑘

𝑃(𝑥)
=

𝑃 𝑌 = 𝑘 ∗
1

2𝜋𝜎
𝑒−

1
2

(𝑥−𝜇(k))/σ2

σ𝑙=1
𝐾 𝑃 𝑌 = 𝑙 ∗

1

2𝜋𝜎
𝑒−

1
2

(𝑥−𝜇(l))/σ2

Or the discriminant score becomes:

𝛿𝑘 𝑥 =
[𝑥 − 𝜇(k)]2

σ2
+ ln(𝑃 𝑌 = 𝑘 )

- This means that we can “estimate” the probabilities (the scores) by simply plugging the
mean and variance estimates. 

- Each observation is then classified as one of k possibilities according the the highest
score.



Running analysis

We use just one variable as 
an illustration (p=1).



Descriptives and assumptions

Different variances. We can actually 
test this selecting Box’s M in 
statistics.



Model fit



Results



RerunGiven the rejection of equal covariances, rerun the analysis without this 
assumption. Note that when there are many variables this implies estimating a 
lot more parameters (p*(p-1)/2)
What do you conclude about your classification?

Reminder: Three main Assumptions.
1. Cases should be independent. 
2. Predictor variables should have a multivariate normal distribution, and 
3. Within-group variance-covariance matrices should be equal across groups. 



Note

We assumed “uninformative” prior probabilities (i.e. uniform distribution). 
However, if we believe that the group sizes are according to the actual 
probabilities we should observe in the data, we can use these 
probabilities.



Questions

• Redo the analysis with all the explanatory variables. Run separate the 
baseline case with equal variances and priors and different variances 
and priors.

• Now cross-tab the predictions of LDA and NB. Which model predicts 
best? Can you explain the differences?

• What if you look only for the cross-tabs in the subsample not used for 
training?



Measuring 
fit

• Imagine we obtain the results below

• There is 92% accuracy.

• Is this a good fit?

Predicted 
stolen?

Yes No

Truth Yes 2 5

No 3 90



Measuring 
fit

There is more than one measure of fit. 

• Accuracy is a measure of overall fit:

#correct cases/#total cases=92/100=92%

• Precision measures the fraction of predicted yes that were correct:

# correct yes/(#correct yes+# incorrect yes)=2/(2+3)=40%

• Recall measures the fraction of yes that were correctly predicted: 

# correct yes/(#correct yes+# incorrect no)=2/(2+5)=28.5%

• F1 score is the harmonic mean of precision and recall

2*precision*recall/(precision+recall)=33

• Accuracy

• Precision

• Recall

• F1 score



Think

•What is better? A model with 90% 
accuracy and an F1 score of 40 or a model 
with 75% accuracy and an F1 score of 60?



Balanced accuracy for imbalanced data

• If the data is very imbalanced, imagine you are trying to predict credit card 

fraud that typically happens less than 1 out of 1000 times, a model that 

predicts no fraud will have an accuracy of 99.9%.

• In these cases prediction and recall may be useful to look at.

• Alternatively, we can use balanced accuracy

• Balanced accuracy=(sensitivity+specificity)/2=62.7%

Where

• Sensitivity=true positive rate (recall)=2/(2+5)=28.5%

• Specificity=true negative rate=90/(90+3)=96.7%



Measuring 
fit

• ROC (receiver operating characteristic) curve

• Sensitivity (true positive 
rate)

• Specificity: true negative 
rate

The higher the (AUC) area 
under the (ROC) curve, the 
better. 

Max AUC is 1, while 0.5 is a 
random classifier.



Let the price of car be Y and the characteristics
of cars be X. To predict Y as a function of X:

A. We can use an LDA model.

B. We need to use na alternative model.



Classical 
techniques

Table Lookup Models

Naïve Bayes + LDA

(Multiple) Linear 
Regression

(Multiple) Logistic 
Regression



Multiple Linear Regression
REVISION

ANY QUESTIONS?



0

20

40

60

0 20 40 60

X

Y

Target variable is continuous (different from previous cases)

Objective is to get a best prediction for the outcome variable

Example:
1. Plot of All (Xi, Yi) Pairs

2. Suggests How Well Model Will Fit

REVISION: MULTIPLE LINEAR REGRESSION



Revision: Linear regression

How would you draw a line through the points?   How do you 
determine which line ‘fits best’? 

0

20

40

60

0 20 40 60

X

Y



0
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0 20 40 60

X

Y
Slope changed

Intercept unchanged

How would you draw a line through the points?   How do you 
determine which line ‘fits best’? 

Revision: Linear regression



0

20

40

60

0 20 40 60

X

Y

Slope unchanged

Intercept changed

Revision: Linear regression

How would you draw a line through the points?   How do you 
determine which line ‘fits best’? 



0

20

40

60

0 20 40 60

X

Y
Slope changed

Intercept changed

How would you draw a line through the points?   How do you 
determine which line ‘fits best’? 

Revision: Linear regression



Revision: Least Squares

1. ‘Best Fit’ Means Difference Between Actual Y Values & 
Predicted Y Values Are a Minimum. But Positive 
Differences Off-Set Negative ones.

2. How good is the fit? R2 measures the % of the 
variation in Y explained by the variation in X. It varies 
from 0 to 1.



Revision: Linear regression

Y

Y = mX + b

b = Y-intercept

X

Change

in Y

Change in X

m = Slope

Linear Equation



Y Xi i i= + +  0 1

Revision: Linear Regression Model

Relationship Between Variables Is a Linear Function.

Dependent 

(Response) 

Variable

(e.g., sales)

Independent (Explanatory) 
Variable 
(e.g., Amount spent on 
advertising)

Population 
Slope

Population 
Y-Intercept

Random 
Error



Revision: Least squares

Least squares minimizes vertical (squared) distances.

▪ i.e. Min σ𝑖=1
𝑁 𝜀i

2

0

20

40

60

0 20 40 60

X

Y

εi



Revision: Multiple case

▪More than two variables cannot be presented graphically 
(with two we can still have a 3D plot..).

▪Equation becomes:

𝑌𝑖 = β0 +β1X1𝑖 +…+β𝑘Xk𝑖 +ε𝑖

▪Ys and Xs are known (so take them as constants) and we 
want to learn (infer) the βs.



Classical 
techniques

Table Lookup Models

Naïve Bayes + LDA

(Multiple) Linear 
Regression

(Multiple) Logistic 
Regression



Logistic regression

▪Similar to multiple regression, except that the dependent 
variable is categorical.

▪Note: Linear regression applied to binary variables is called a 
linear probability model

• Predicted values above 1 and 
below 0?

• Logistic model transforms 
linear into an S-shaped 
function always between 0 and 
1 (logistic function).



Logistic regression

▪Transform probabilities to log-odds.

▪Fit a linear regression model to log-odds.

ln
𝑝

𝑖

1−𝑝𝑖
= β0 +β1X1𝑖 +…+β𝑘Xk𝑖

Or

𝑝𝑖 =
1

1 + exp − β0 +β1X1𝑖 +…+β𝑘Xk𝑖

▪Maximum likelihood estimation vs. least squares 
estimation: The principle for fitting the curve is no longer 
minimizing the residuals (as was for linear regression) but 
instead it is maximizing the likelihood of having observed the 
given values.



DIY – Model vehicle sales

Two exercises

1. Redo the analysis in Naïve Bayes and LDA with Logistic 
regression

2. Objective: Modeling vehicle sales.

 Data file: ch03_car_sales.sav

1.Why do we use log sales as dependent variable?

2.Why is multicollinearity a concern?

3.How do you select which variables to include?



DIY – Model vehicle sales

Analyze > Regression > Linear...



Results



Results

Tolerance is the percentage of the variance in a 
given predictor that cannot be explained by 
the other predictors. Close to zero means 
multicollinearity.

VIF – Variance inflated factors: Above 2 shows 
signs of multicollinearity.

Collinearity diagnostics 
Several eigenvalues are close 
to 0, indicating that the 
predictors are highly 
intercorrelated and that small 
changes in the data values may 
lead to large changes in the 
estimates of the coefficients.

Simple
correlation

Conditional
correlations

Correlations –
See next slide



Different correlations

• Zero-order correlation is the simple correlation between dependente 
and independente variable

• Partial correlation is the correlation between the dependent and 
independente variable conditional on all the remaining independente 
variables

• Part correlation is the correlation between the dependente variable
and the independente variable conditional on all the remaining
variables (only the independente variable is conditioned upon). The 
primary reason for conducting the part correlation would be to see 
how much unique variance the independent variable explains in 
relation to the total variance in the dependent variable, rather than 
just the variance unaccounted for by the control variables.



House prices

House prices depend on location
latitude (lat) and longitude (lon). 
John capture this in a linear model
of the form:

𝑌𝑖 = β0 +β1lat𝑖 +β2lon𝑖 +ε𝑖

A. True

B. False



Modern 
techniques 

for model 
building

Modern regression: ridge

Modern regression: lasso

Prediction trees

Artificial Neural Networks

Others (e.g. SVM)



Modern 
regression

Ridge regression



House characteristics

• Location

• Area

• Typology

• Construction year

• Bathrooms

• Energy certificate

• Central heating

• AC

• Garage

• Garden
• Fireplace
• Gatted community
• Equipped kitchen
• Storage
• Swimming pool
• Suite
• Terrace
• Balcony
• Security
• Sea View

As we add more 
characteristics, the
prediction error of
our model should:
A. Increase
B. Decrease
C. Stay the same



Ridge regression

Reminder: shortcomings of linear regression

1. Predictive ability: We can decompose prediction error into 
squared bias and variance. Linear regression has low bias 
(zero bias) but suffers from high variance. So it may be 
worth sacrificing some bias to achieve a lower variance.

2. Interpretative ability: with a large number of predictors, it 
can be helpful to identify a smaller subset of important 
variables. Linear regression doesn't do this.

Also: linear regression is not defined when p > n



General setup

Given fixed covariates                        , we formalize the model

where the function is unknown (could be linear).

Our data contains information on (y,x).

This setup is valid for any dependence technique: regression, 
decision trees, artificial neural networks, etc..
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Example: subset of small coefficients
Let n = 50, p = 30, and σ2=1. The true model is linear with 10 
large coefficients (between 0.5 and 1) and 20 small ones 
(between 0 and 0.3).

Note: 

Prediction error=True noise+Bias2+Variance of estimates

The linear regression fit:
Squared bias ≈ 0.006
Variance ≈ 0.627
Pred. error ≈ 1+0.006+0.627=1.633

Question: Can we do better by shrinking the coefficients to reduce variance?



Example: subset of small coefficients

The linear regression:
Squared bias ≈ 0.006
Variance ≈ 0.627
Pred. error ≈ 1+0.006+0.627=1.633

Ridge regression:
Squared bias ≈ 0.077
Variance ≈ 0.403
Pred. error ≈ 1+0.077+0.403=1.48

Basic idea of Ridge: More 
complex models can have 
small bias but have larger 
variance. Simplify the 
model by penalizing 
complexity and reduce 
variance of the estimated 
coefficients.  [Limit when 
all coefficients equal 0].



Ridge regression

Ridge regression is like least squares but shrinks the estimated 
coefficients towards zero. Given a response vector y and a predictor matrix X, 
the ridge regression coefficients are obtained by minimizing:

Here λ≥0 is a tuning parameter, which controls the strength of the 
penalty term. Note that:

▪ When λ = 0, we get standard linear regression.

▪ When λ = ∞, we get 𝛽 = 0.

▪ For λ in between, we are balancing two ideas: fitting a linear model of y on X, 

and shrinking the coefficients.
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Example: visual representation of ridge 
coefficients

Recall our last example. Here is a visual representation of the 
ridge regression coefficients for λ = 25:



Important details

• Intercept: When including an intercept term in the regression, we usually leave 
this coefficient unpenalized. Otherwise, we could add some constant amount c 
to the vector y, and this would not result in the same solution. Hence ridge 
regression with intercept minimizes

If we center the columns of X, then the intercept estimate ends up just being 
β0=y, so we usually just re-center y and X, and don't include an intercept. [Think 
about R2 in simple linear regression].

• Normalization: The penalty term is unfair if the predictor variables are not on the 
same scale. (Can you see why?) Therefore, if we know that the variables are not 
measured in the same units, we typically scale the columns of X (to have sample 
variance 1), and then we perform ridge regression.
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Bias and variance of ridge regression

The bias and variance are not quite as simple to write down for ridge 
regression as they are for linear regression, but closed-form 
expressions are still possible. 

The general trend is:

• The bias increases as λ (amount of shrinkage) increases.

• The variance decreases as λ (amount of shrinkage) increases.

Question: What is the bias at λ = 0? The variance at λ = ∞?



Example: bias and variance of ridge 
regression

Bias and variance for the last example:



Mean squared error for the last example:



Questions

Question 1: OK, but this only works for some values of λ. So how 
would we choose λ in practice?“

A. Calibrate with numbers used in the literature

B. Trial and error.

C. You can’t



Questions

Question 1: OK, but this only works for some values of λ. So how 
would we choose λ in practice?“

A. Calibrate with numbers used in the literature

B. Trial and error.

C. You can’t

This is actually quite a hard question. We will use cross validation 
methods in the following sections.



Questions

Question 2: “What happens when none of the coefficients are 
small?“

A. λ is smaller because there is no shrinkage to be done.

B. λ is larger since we have to shrink the coefficients even further.

C. λ is set independently of the size of the coefficients.



Questions

Question 2: “What happens when none of the coefficients are 
small?“

A. λ is smaller because there is no shrinkage to be done.

B. λ is larger since we have to shrink the coefficients even further.

C. λ is set independently of the size of the coefficients.

In other words, if all the true coefficients are moderately large, is it 
still helpful to shrink the coefficient estimates? The answer is 
(perhaps surprisingly) still “yes". But the advantage of ridge 
regression here is less dramatic, and the corresponding range for 
good values of λ is smaller.



Example: moderate regression coefficients

Same setup as before, except now the true coefficients are all moderately 
large (between 0.5 and 1). 

The linear regression fit:
Squared bias ≈ 0.006
Variance ≈ 0.628
Pred. error ≈ 1+0.006+0.628=1.634

Question: Why are these numbers essentially the same as those from the last
example, even though the true coefficients changed?



Ridge regression can still outperform linear regression in terms of
mean squared error:

Only works for λ less than 5, otherwise it is very biased. Why?



Variable selection

To the other extreme (of a subset of small coefficients), suppose a group of true 
coefficients are identically zero and response does not depend on these 
predictors.

The problem of picking out the relevant variables from a larger set is called 
variable selection. This means estimating some coefficients to be exactly zero. 

Again: Predictive ability vs. interpretative ability.

Question 3: “How does ridge regression perform if a group of the true 
coefficients was exactly zero?“

A. If some coefficients are zero, ridge will shrink them substantially

B. If some coefficients are zero, ridge will set them to zero

C. If some coefficients are zero, ridge will not perform any shrinkage



Variable selection

To the other extreme (of a subset of small coefficients), suppose a group of true 
coefficients are identically zero and response does not depend on these 
predictors.

The problem of picking out the relevant variables from a larger set is called 
variable selection. This means estimating some coefficients to be exactly zero. 

Again: Predictive ability vs. interpretative ability.

Question 3: “How does ridge regression perform if a group of the true 
coefficients was exactly zero?“

A. If some coefficients are zero, ridge will shrink them substantially

B. If some coefficients are zero, ridge will set them to zero

C. If some coefficients are zero, ridge will not perform any shrinkage

Answer: It depends on whether we are interested in prediction or interpretation. 
We'll consider the former first.



Example: subset of zero 
coefficients

Same setup as before, except now 10 true coefficients are large (between 
0.5 and 1) and 20 are exactly 0. 

The linear regression fit:
Squared bias ≈ 0.006
Variance ≈ 0.627
Pred. error ≈ 1+0.006+0.627=1.633

Again these numbers are essentially the same .



Ridge regression performs well in terms of mean-squared error. 

Why is the bias not as large here for large λ?

Prediction



As we vary λ we get different ridge regression coefficients, the larger the λ 
the more shrinkage. Here we plot them against λ.

The red paths correspond to the
true nonzero coefficients; the gray
paths correspond to true zeros.
The vertical dashed line at λ = 15
marks the point above which ridge
regression's MSE starts losing to
linear regression.

Note: The gray coefficient paths are not exactly zero; they are shrunken, but still 
nonzero.

Interpretation



Ridge regression doesn't perform variable 
selection

We can show that ridge regression doesn't set coefficients exactly to 
zero unless λ = ∞, in which case they are all set to zero. 

In summary, ridge regression cannot perform variable selection, and 
even though it performs well in terms of prediction accuracy, it does 
poorly in terms of offering a clear interpretation.



Recap: ridge regression

▪ We learned ridge regression, which minimizes the usual regression 
criterion plus a penalty term on the squared L2 norm of the coefficient 
vector. As such, it shrinks the coefficients towards zero. This 
introduces some bias, but can greatly reduce the variance, resulting in 
a better mean-squared error.

▪ The amount of shrinkage is controlled by λ, the tuning parameter that 
multiplies the ridge penalty. Large λ means more shrinkage, and so we 
get different coefficient estimates for different values of λ. Choosing an 
appropriate value of λ is important, and also difficult. This can be done 
using cross validation. (we will discuss this later).

▪ Ridge regression performs particularly well when there is a subset of 
true coefficients that are small or even zero. It doesn't do as well when 
all of the true coefficients are moderately large; however, in this case it 
can still outperform linear regression over a pretty narrow range of 
(small) λ values.



DIY

• Data file: car_sales.sav

• Reproduce the previous analysis of car sales using the 
SPSS command: Analyze > regression > optimal scalling 
(CATREG).

• Then use a Ridge model.

• First recode the variable type so that a “0” becomes a “2”. 
(command CATREG does not deal with zero valued 
variables).







Compare to linear regression results



Ridge



Coefficients for different levels of penalty



New dataset created with coefficients for each
penalty level



Modern 
regression

The lasso



Variable selection

Ridge regression:

▪ Can have better prediction error than linear regression in a variety of 
scenarios. It works best when there is a subset of the true coefficients 
that are small or zero. 

▪ But it will never sets coefficients to zero exactly, and therefore cannot 
perform variable selection in the linear model. While this does not 
seem to hurt its prediction ability, it is not desirable for the purposes of 
interpretation (especially if the number of variables p is large).

The lasso can!



The lasso

The lasso estimate is defined as minimizing

The difference between the lasso problem and ridge regression is the 
use of a L1 (absolute value) vs. an L2 (squared) penalty. 

Even though both problems look similar, their solutions behave very 
differently.

Note: “Lasso" is an acronym for: Least Absolute Selection and 
Shrinkage Operator.
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Tuning

The tuning parameter (λ) controls the strength of the penalty, and (like 
for ridge regression) we get:

• βlasso = βOLS when λ = 0, and

• βlasso  = 0 when λ = ∞.

For λ in between these two extremes, we are balancing two ideas: fitting 
a linear model of y on X, and shrinking the coefficients. 

However, the nature of the L1 penalty causes some coefficients to be 
shrunken exactly to zero.



Lasso vs. Ridge

The nature of the L1 penalty causes some 

coefficients to be shrunken exactly to zero.

L1 

penalty

L2 

penalty



Lasso vs. Ridge

The lasso is substantially different from ridge 
regression on one dimension: it is able to perform 
variable selection in the linear model. 

As λ increases:

1. More coefficients are set to zero (less variables 
are selected), and 

2. Among the nonzero coefficients, more shrinkage 
is employed.



Example: visual representation of lasso 
coefficients

Our running example with n = 50, p = 30, 10 large true coefficients, 20 
small. Here is a visual representation of lasso vs. ridge coefficients 
(with the same degrees of freedom):



Important details

› Intercept: When including an intercept term, we usually leave it 
unpenalized, just as in ridge. Hence the lasso problem with intercept 
minimizes

As we've seen before, if we center the columns of X, then the intercept 
estimate turns out to be β0 = ത𝑦. Typically, re-center y and X, and don't 
include an intercept.

› Normalization: As with ridge regression, the penalty term is unfair if the 
predictor variables are on different scales. First, scale the columns of X 
(to have sample variance 1), and then solve the lasso problem.
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Bias and variance of the lasso

The bias and variance are not quite as simple to write down for lasso 

regression as they are for linear regression, but closed-form 

expressions are still possible. 

The general trend is:

• The bias increases as λ (amount of shrinkage) increases.

• The variance decreases as λ (amount of shrinkage) increases.

Question 1: What is the bias at λ = 0? 

A. Highest

B. Lowest

Question 2: The variance at λ = ∞?

A. Highest

B. Lowest



Example: subset of small coefficients

Example: n = 50, p = 30; true coefficients: 10 large, 20 small

In terms of prediction error 

(or mean squared error), 

the lasso performs 

comparably to ridge 

regression.



Example: all moderate coefficients

Example: n = 50, p = 30; 30 moderately large

Note that here, as opposed to ridge 
regression, the variance doesn't 
decrease fast enough to make the 
lasso favorable for small λ



Example: subset of zero coefficients

Example: n = 50, p = 30; 10 large, 20 zero



Example: credit data

Response variable is average credit debt.

Predictors are income, limit (credit limit), rating (credit rating), 
student (indicator), and others.



Recap: the lasso

▪ The lasso is a variable selection method in the linear model setting. 

The lasso uses a penalty like ridge regression, except the penalty is 

the L1 norm of the coefficient vector, which causes the estimates of 

some coefficients to be exactly zero. This is in contrast to ridge 

regression which never sets coefficients to zero.

▪ The tuning parameter  controls the strength of the L1 penalty. The 

lasso estimates are generally biased, but have good mean squared 

error (comparable to ridge regression). On top of this, the fact that it 

sets coefficients to zero is good for interpretation.





Coefficients for different levels of penalty



New dataset created with coefficients for each
penalty level



Model selection and validation



Regularization

Linear regression has generally small bias (zero bias, when the true 
model is linear) but high variance, leading to poor predictions. 

Modern methods introduce some bias but significantly reduce the 
variance, leading to better predictive accuracy. More generally, modern 
methods minimize

The term R is called a penalty or regularizer, and modifying the 
regression problem in this way is called applying regularization:

▪ Note: Regularization can be applied beyond regression: e.g., it can be applied 
to classification, clustering, principal component analysis.
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Regularization

In Ridge R(B)=

In Lasso R(B)=

)(||||
2

2
BRXy  +−



Example: smoothing splines



Setting the tuning parameter

▪ Each regularization method has an associated tuning parameter: 
e.g., this was λ for lasso and ridge regression in the penalized forms.

▪ The tuning parameter controls the amount of regularization, so 
choosing a good value of the tuning parameter is crucial. Each tuning 
parameter value corresponds to a fitted model. We also refer to this 
task as model selection.

▪ A good choice of tuning parameter, depends on whether our goal is 
prediction accuracy or interpretation. We’ll cover choosing the 
tuning parameter for the purposes of prediction; choosing the tuning 
parameter for the latter purpose is a harder problem.



House characteristics

• Location

• Area

• Typology

• Construction year

• Bathrooms

• Energy certificate

• Central heating

• AC

• Garage

• Garden
• Fireplace
• Gatted community
• Equipped kitchen
• Storage
• Swimming pool
• Suite
• Terrace
• Balcony
• Security
• Sea View

John built his model to 
predict house prices with 
5 variables considered 
irrelevant and thus 
removed. The obtained R2 
is 95%. He now knows that 
he can predict 95% of the 
variation in future house 
prices.
A. True
B. False



Prediction error and test error 

The setup is:

xi are fixed (nonrandom) predictor measurements, f(.) is the true 
function we are trying to predict and εi are random errors.

Call (xi , yi), i=1,..,n the training data. Given an estimator መ𝑓 built 
on the training data, consider the average prediction error over all 
inputs 

Where yl, l=,..,L (the test data) are another set of observations, 
independent of y1,…, yn.

nixfy iii ,...,1,)( =+= 









−=  =

L

l ll xfy
L

EfPE
1

2))(ˆ'(
1

)ˆ(



Suppose that መ𝑓 = መ𝑓𝜃 depends on a tuning parameter 𝜽, and we 
want to choose 𝜃 to minimize the average prediction error PE( መ𝑓𝜃).

If we actually had training data y1,…, yn and test data y’1,…, y’L 
(meaning that we don't use this to build መ𝑓𝜃), we could simply 
calculate the average test error:

as an estimate for PE( መ𝑓𝜃). The larger L is, the better this estimate.

We usually don't have test data. So what to do instead?
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What's wrong with training error?

It may seem like

                                                                         , and

shouldn't be too different. After all, yi and y’l are independent copies of each 
other. The second quantity is called the training error: this is the error of መ𝑓 
as measured by the data we used to build it (in sample).

But actually, the training (out of sample) and test (in sample) error curves 
are fundamentally different. Why?
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Training and test error 

curves, averaged over 

100 simulations.



Test sample

If the problem is getting a test sample, just randomly split the
data in two samples one for estimation (training set) and one for 
validation (test set). 

What is the problem of this approach?

A. Losing observations for training (reduced sample size)

B. Losing observations for testing (reduced sample size)



Cross-validation

Cross-validation is a simple, intuitive way to estimate prediction 
error, given training data (xi , yi), i=1,..,n, and an estimator መ𝑓𝜃, that 
depends on a tuning parameter 𝜃.

Even if 𝜃 is a continuous 
parameter, it's usually not 
practically feasible to consider 
all possible values of 𝜃, so we 
discretize the range and 
consider choosing  over some 
discrete set {𝜃1,.., 𝜃m}.



For a number K, we split the training pairs into K parts or “folds“ 

(commonly K = 5 or K = 10)

K-fold cross validation considers training on all but the kth part,

and then validating on the kth part, iterating over k=1,..,K.

Note: When K = n, we call this leave-one-out cross-validation, because

we leave out one data point at a time.

K-fold cross validation



K-fold cross validation: Procedure

▪ Randomly divide the set {1,..,n} into K subsets (i.e., folds) of roughly equal 
size, F1,...,FK.

▪ For k=1,..,K:

• Consider training on F-k and validating on Fk.

• For each value of the tuning parameter {𝜃1,.., 𝜃m} compute the 
estimate መ𝑓𝜃

-k on the training set, and record the total error on the 
validation set:

▪ For each tuning parameter value , compute the average error over all folds,
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K-Fold cross validation

Having done this, we get a cross-validation error curve CV(𝜃) (this 
curve is a function of 𝜃):

Choose the value of tuning parameter that minimizes this curve.



Example: choosing λ for the lasso

Recall our running example 
from last time: n = 50, p = 30, 
and the true model is linear 
with 10 nonzero coefficients. 
Consider the lasso estimator 
and use 5-fold cross-
validation. 

The resulting cross-validation error 

curve:



What happens if we really shouldn't be shrinking in the first 
place? We'd like cross-validation, our automated tuning 
parameter selection procedure, to choose a small value of λ.

Recall the example where n = 50, p = 30, and the true model is 
linear with all moderately large coefficients:



Note• The test error is a random variable subject to uncertainty. 

• As such we can also calculate its standard error (the standard 
error of the test error).

• In some cases we might opt for a model that is one s.e. away from
the the minimization error. This is a conservative strategy.

+1 s.e.



What to do next?

▪After having used cross-validation to choose a value of the 
tuning parameter we now fit our estimator to the entire training 
set (xi , yi), i=1,..,n, using the tuning parameter value.

▪Example: In the lasso case, we solve the problem on all of the 
training data, with λ=0.407.

▪We can then use this estimator to make future predictions.



Recap: cross-validation

▪Training error, the error of an estimator as measured by the 
data used to fit it, is not a good surrogate for prediction error. 
It just keeps decreasing with increasing model complexity.

▪Cross-validation, on the other hand, much more accurately 
reflects prediction error. If we want to choose a value for the 
tuning parameter of a generic estimator (and minimizing 
prediction error is our goal), cross-validation is a standard 
tool.

▪We usually pick the tuning parameter that minimizes the 
cross-validation error curve.



Ridge with cross validation





New dataset created with coefficients for each
penalty level with EPE and APE



Plot APE and EPE

• Graphs > Chart builder



APE vs. EPE



Lasso with crossvalidation







New dataset created with coefficients for each
penalty level with EPE and APE



Plot APE and EPE

• Graphs > Chart builder



APE vs. EPE
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